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Abstract

We present an integrated framework to address performance prediction and maintenance optimization for transporta-
tion infrastructure facilities. The framework is based on formulating the underlying resource allocation problem as dis-
crete-time, stochastic optimal control problem with linear dynamics and a quadratic criterion. Facility deterioration is
represented as a time series which provides an attractive and rigorous approach to specify and estimate performance mod-
els. The state and decision variables in the framework are continuous which allows the framework to overcome important
computational and statistical limitations that do not allow existing optimization models to address various problems that
arise the management of transportation infrastructure. To illustrate the advantages of the proposed approach, we conduct
a numerical study where we examine the case of multiple technologies being used simultaneously to collect condition data.
Specifically, we illustrate how the framework can be used to quantify the effect of the capabilities of inspection technolo-
gies, i.e., precision, accuracy and relationships, on life-cycle costs. This information can be used to compute the operational
value of combining technologies, and thus, to guide in their selection based on economic criteria.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Transportation infrastructure management refers to the process of making decisions concerning the alloca-
tion of resources for the preservation, i.e., maintenance and repair (M&R), of the facilities that comprise
transportation systems, e.g., pavement and bridge networks. In developed countries, where much of the trans-
portation infrastructure is mature and portions are nearing the end of their service lives and need to be
replaced, M&R decisions are increasingly important. This is due to both the far-reaching and serious negative
impacts of deficient infrastructure, as well as the magnitude of M&R expenditures. In the United States, for
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example, annual M&R expenditures are on the order of tens of billions of dollars.1 M&R decisions trade off
user costs, which depend on facility condition and correspond to a fraction of the costs associated with travel
time, fuel consumption, vehicle depreciation and maintenance, with M&R costs. As facilities deteriorate, the
rate at which user costs accrue increases. M&R costs are incurred to improve condition, and thus, reverse the
effects of deterioration. Models to support infrastructure management evaluate both the short and long-term
economic consequences associated with M&R decisions. This evaluation involves processing data related to
current infrastructure condition and forecasting the effect of M&R decisions on future condition.2 The eco-
nomic consequences of M&R decisions are then estimated with a function that maps condition forecasts to
costs.

The importance of transportation infrastructure management has, over the last 40 years, motivated a great
deal of research to address both the development and estimation of statistical performance models to support
condition forecasting, as well as the formulation and analysis of optimization models to support M&R deci-
sion-making. Optimization models to support M&R decisions have been developed from different perspectives
to address numerous applications. Extensive surveys of M&R models and applications appear in Barlow et al.
(1965), McCall (1965), Pierskalla and Voelker (1976), Sherif and Smith (1981), Valdez Flores and Feldman
(1989) and Dekker (1996). With few exceptions, discrete-time M&R optimization models, consistent with
the periodic review nature of infrastructure management, are formulated as finite (state and action) Markov
decision processes (MDPs). Bellman (1955), Dreyfus (1960), Derman (1962) and Klein (1962) were first to pro-
pose the MDP formulations for M&R problems. Golabi et al. (1982) were first to adapt the methodology to
the management of transportation infrastructure.

An important assumption in the MDP framework is that the state variables, representing facility condition
or its proxies, are discrete. This seemingly innocuous assumption explains an important divergence in the
infrastructure management literature. On one hand, there is the development and estimation of statistical
models for condition forecasting (cf. Humplick (1992); Ben-Akiva and Ramaswamy (1993); Ben-Akiva and
Gopinath (1995)). These models assume that facility condition is represented by continuous variables.3 On
the other hand, there is the development and estimation of transition probabilities that are used for perfor-
mance prediction in a manner consistent with the MDP framework, i.e., where condition or its proxies are
represented by variables defined over discrete (and ordinal) sets (cf. Madanat et al. (1997) and Mishalani
and Madanat (2002)). These sets are constructed by partitioning the variables’ state-spaces into mutually
exclusive and collectively exhaustive sets. The partitioning process introduces forecasting errors and uncer-
tainty, and thus, explains why using continuous variables is not only intuitively appealing, but has also been
shown in empirical studies to be superior.

In addition to introducing forecasting errors and uncertainty, the use of discrete state variables leads to
computational and statistical limitations that make the MDP framework unattractive to support the manage-
ment of transportation infrastructure. This is because both the number of parameters that require estimation
to specify the transition probabilities for the model, and the computational effort to obtain optimal M&R
policies increase exponentially with the number of variables in the model. These difficulties are well-known
and referred to as ‘‘the curse of dimensionality’’. Moreover, these problems are statistically and practically
significant because there are situations where having the flexibility to add variables to a model may be desir-
able, e.g., in cases where multiple technologies are used simultaneously to collect condition data, or to add
explanatory variables to a facility deterioration model. The former is of practical importance as the use of
multiple technologies (e.g., satellite imaging, video, radar, laser and sensors) to evaluate and measure dis-
tresses on transportation infrastructure is increasingly common. Relaxing the Markovian assumption (by add-
1 Source: Federal Highway Administration, Highway Statistics, tables FA3, SF2, LGF2, SF4B for various years. In 2003, the most
recent year for which statistics are available, federal, state and local maintenance expenditures on highways and roads exceeded $30 billion.

2 Data related to infrastructure condition are obtained by collecting distress measurements. Examples of distresses in pavement
management include roughness, type and extent of cracking, rut depth and profile, and extent of surface patching. Condition forecasts are
generated with a deterioration model which is a statistical expression that relates condition to a set of explanatory variables such as design
characteristics, traffic loading, environmental factors, and history of M&R activities.

3 Condition is assumed to be continuous to reflect the fact that its degradation is caused by continuous physical and chemical processes
that take place at the microscopic level. Examples of theses processes include fatigue due to loadings, expansion and contraction due to
temperature changes, and corrosion of reinforcing steel bars in reinforced concrete structures.
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ing lagged dependent variables or by adding exogenous variables) are examples of situations where the flex-
ibility to add explanatory variables to a performance model may be desirable. The motivation for considering
this case is that empirical studies such as Ben-Akiva and Ramaswamy, 1993 in pavement management, and
Madanat et al. (1997) and Mishalani and Madanat (2002) in bridge management have shown that physical
deterioration of transportation infrastructure may not be Markovian.

To address the above limitations, we present an integrated framework to simultaneously address perfor-
mance prediction and M&R decision-making for transportation infrastructure facilities. The framework is
based on formulating the underlying resource allocation problem as a discrete-time, stochastic optimal control
problem with linear dynamics and a quadratic criterion, i.e., a linear-quadratic (LQ) problem. Facility dete-
rioration is represented as a time series with continuous state variables. This, in turn, makes the proposed
framework consistent with models in the literature, and provides an attractive and rigorous approach to spec-
ify and estimate performance models. We describe the framework in detail in Section 2. In Section 3, we
exploit the computational versatility of the proposed framework to examine the case of multiple technologies
being used simultaneously to collect condition data. Specifically, we use numerical examples to illustrate how
the framework captures the capabilities of inspection technologies, i.e., precision, accuracy and relationships,
and therefore, can be used as a tool to guide the selection of inspection technologies based on economic cri-
teria. Concluding remarks are presented in Section 4.

2. Model formulation

In this section, we present a LQ formulation for the problem of allocating resources for M&R of transpor-
tation infrastructure. The framework consists of two components: a state-estimation problem in which arrays
of condition data are processed and used to generate condition forecasts; and an optimization problem that
yields M&R policies. We begin this section by introducing notation and discussing the assumptions that we
use to formulate and solve the proposed optimization model.

2.1. Notation and assumptions

We introduce the model as an alternative to the latent MDP formulation to support M&R decision-making
for transportation infrastructure proposed by Madanat and Ben-Akiva (1994). In particular, we assume, with-
out loss of generality, that the deterioration, measurement-error, and cost functions are Markovian and sta-
tionary. The other assumptions are as follows:

(1) The state and decision variables in the model are defined over continuous spaces, i.e., X t 2 Rn; Zt 2 Rm;
t ¼ 1; 2; . . . ; T þ 1, and At 2 Rp; t ¼ 1; 2; . . . ; T . The n and m-dimensional vectors Xt and Zt represent
facility condition and the set of distress measurements collected at the start of stage t. The vector At

represents the set of resource allocation decisions selected for stage t.
(2) Following the latent performance modeling approach of Ben-Akiva et al. (1993), we assume that facility

condition can be succinctly expressed in terms of characteristics such as: functional performance, struc-
tural fitness, safety, and aesthetics. The ambiguity that exists in defining and measuring these character-
istics is captured by representing condition as a vector, Xt, consisting of latent/unobservable
components.Henceforth, to simplify the presentation but without loss of generality, we assume Xt and
At are unidimensional (i.e., n = p = 1).

(3) The relationship between facility condition and the distress measurements is given by a measurement
error model of the form: Zt = a + bXt + nt. The vector nt is assumed to follow a Gaussian distribution
with finite covariance matrix, R.

(4) Facility deterioration can be represented by a stochastic linear system of the form: Xt+1 = gXt +
hAt + �t. In time series analysis, this type of model is referred to as an AutoRegressive Moving Average
with eXogenous input (ARMAX) model. We assume that �t follow a normal distribution with mean ��t

and finite variance r2
�t

.
(5) The period cost function can be represented (or approximated) by a second order polynomial, i.e.,

gðX t;AtÞ ¼ aX 2
t þ bX tAt þ cA2

t þ dX t þ eAt þ f .
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(6) The salvage value function can be represented (or approximated) by a second order polynomial, i.e.,
sðX Tþ1Þ ¼ �pTþ1X 2

Tþ1 � qTþ1X Tþ1 � rTþ1.

Prior to discussing a solution procedure for the problem, we note that the above assumptions are not overly
restrictive. Specifically:

• The assumption of continuous state variables is consistent with state-of-the-art statistical performance
models for infrastructure facilities. Furthermore, it is attractive because it eliminates forecasting errors
and uncertainty introduced in the process of obtaining discrete measurement scales that are consistent with
MDP formulations. The nature of these problems is documented in Madanat et al. (1997) and Mishalani
and Madanat (2002).

• The decision variables in the framework, At, t = 1,2, . . .,T, can be interpreted as investment levels or as
maintenance rates. This assumption has been used before in M&R optimization models for transportation
infrastructure (cf. Friesz and Fernandez (1979)), and it is appropriate for tactical and strategic models that
are used for budget allocation decisions. This is in contrast with operational models used for sequencing
and scheduling M&R activities. An important practical criticism of assuming that the decision variables
are continuous is that different M&R decisions can only differ in their intensity. While this assumption
might be a good approximation when considering activities such as overlays of different thicknesses, it is
probably not appropriate when comparing across fundamentally different activities, e.g., routine mainte-
nance versus reconstruction. This criticism can be mitigated by specifying condition as a (multi-dimen-
sional) vector, e.g., X t ¼ ½xf

t ; xs
t � (with xf

t and xs
t representing the facility’s functional performance and

structural fitness at the start of stage t, respectively), and adjusting the deterioration and measurement-error
models accordingly. It is also possible to define a decision vector, for each period, e.g., At ¼ ½af

t ; as
t �, with

components that impact one or both of the condition types. This type of model can be used to evaluate
trade-offs between M&R activities that differ in their effect and costs.

• The linear specifications assumed for the measurement-error models, along with the assumptions of contin-
uous variables and that error terms are Gaussian, is compatible with statistical performance models for
infrastructure facilities presented in the literature (cf. Hudson et al. (1987), Humplick (1992), Ben-Akiva
and Ramaswamy (1993) and Ben-Akiva and Gopinath (1995)). The vector of measurements, Zt, is modeled
as a manifestation of the latent condition, Xt, which is corrupted by systematic and random errors, cap-
tured with the parameters a and b, and nt, respectively. The components, ai, bi and ni

t are assumed to be
properties of the technology,4 i.e., ai and bi describe technology i’s accuracy and the variance of ni

t,
Vðni

tÞ ¼ r2
n, is its precision. Often, distresses corresponding to different physical characteristics are collected

and the number of measurements (i.e., the dimension of Zt) is larger than the number of latent condition
variables (i.e., the dimension of Xt). In such models, a, b and n account for the fact that the measurements
are imperfect proxies of the latent condition variables.

• ARMAX models provide a convenient, flexible and rigorous framework to formulate and estimate infra-
structure deterioration models; however, the assumption that they are appropriate requires (empirical) val-
idation. While preliminary statistical analysis and results are encouraging (Chu and Durango-Cohen,
submitted for publication),5 the assumptions embedded in ARMAX models may not be universally valid,
e.g., that the effect of M&R actions is linear and additive. Even though there is flexibility to (partially)
address some of the limitations, it is important to realize that the ARMAX framework may be inadequate
in certain situations. Thus, the use of ARMAX models should be interpreted as analogous to the use of
linear programming, even though most realistic problems probably do not exhibit the linear structure that
is assumed.
4 The parameters in the model may also depend on factors such as location, time period, equipment operator, or the true value of the
underlying distress.

5 State-space specifications of ARMAX models are used to formulate and estimate deterioration and measurement-error models for
transportation infrastructure. The models are estimated using deflection and pressure measurements generated by sensors embedded in an
asphalt pavement.
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• The assumptions about costs are not overly restrictive because, for example, it may be possible to obtain
optimal M&R policies for general classes of continuous cost functions by solving a sequence of problems.
In each problem the cost function is approximated by a second-order Taylor Series expanded about a
different point. The procedure is analogous to the Newton–Raphson method for solving systems of equa-
tions/optimization problems. The procedure is described further in Dreyfus (1977) and the references
therein.

2.2. Optimization problem

With the assumptions discussed in the preceding section, the M&R optimization problem can be formu-
lated as a dynamic program. The fact that condition is unobservable means that when selecting a course of
action at the start of stage t, a decision-maker can only rely on the sequence of applied actions and measure-
ments collected by the start of t. This information corresponds to the ‘‘state of the system’’ and can be rep-
resented with the information vector It � {Z1,A1, . . .,Zt�1,At�1,Zt} = {It�1,At�1,Zt}. The optimal objective
function, vt(It) is defined as the minimum expected discounted cost from the start of t until the end of the hori-
zon given the information available at the start of t, It. Mathematically, the model can be expressed with the
following recurrence relation and boundary condition:
6 EY j
to Y g
vtðI tÞ ¼ min
At2R
fEX t jIt ½aX 2

t þ bX tAt þ cA2
t þ dX t þ eAt þ f � þ dEI tþ1jI t ½vtþ1ðI tþ1Þ�g6: ð1Þ

vTþ1ðITþ1Þ ¼ EX Tþ1jITþ1
½pTþ1X 2

Tþ1 þ qTþ1X Tþ1 þ rTþ1� ð2Þ
The first term in Eq. (1) corresponds to the expected costs incurred in stage t; the second term corresponds
to the minimum discounted (with a discount factor d) sum of costs from the start of stage t + 1 to the end of
the planning horizon (start of stage T + 1). The boundary condition (Eq. (2)) is used to assign the residual
value at the end of the planning horizon.

With the assumptions presented in the previous section, the optimal policy for the above dynamic program
can be expressed as a closed-form linear function of EX t jI t ½X t�. The parameters can be computed recursively with
the following formulas:
ltðI tÞ ¼ �
bþ 2dptþ1gh

2cþ 2dptþ1h2
EX t jI t ½X t� þ

2dptþ1h��þ dqtþ1hþ e

2cþ 2dptþ1h2

" #
; t ¼ T ; . . . ; 1 ð3Þ

pt ¼ aþ dptþ1g2 � ðbþ 2dptþ1ghÞ2

4½cþ dptþ1h2�
; t ¼ T ; . . . ; 1 ð4Þ

qt ¼ d þ 2dptþ1��g þ dqtþ1g � ½bþ 2dptþ1gh�½eþ 2dptþ1h��þ dqtþ1h�
2½cþ dptþ1h2�

; t ¼ T ; . . . ; 1 ð5Þ

rt ¼ f þ dptþ1ð��2 þ r2
� Þ þ dqtþ1��þ drtþ1 �

½eþ 2dptþ1h��þ dqtþ1h�2

4½cþ dptþ1h2�
; t ¼ T ; . . . ; 1 ð6Þ
where lt(It) represents the optimal decision for period t, and is expressed as a function of the parameters pt, qt,
rt. The formulas are obtained by induction as shown in Appendix A. The equations are evaluated recursively
noting that pT+1, qT+1, rT+1 are the parameters that define the salvage value function.

Using the solution to the above system of equations allows us to obtain the following closed form expres-
sion for the optimal objective value function:
vtðI tÞ ¼ ptEX t jIt ½X 2
t � þ qtEX t jI t ½X t� þ rt: ð7Þ
W ½�� and VY jW ð�Þ are the conditional expectation and conditional variance operators. The expectation/variance is taken with respect
iven W.
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The computational effort to obtain an optimal M&R policy, lt(It), t = 1,2, . . .,T, does not depend on the
size of the vector Zt. However, we note that to implement the optimal policy and to evaluate the optimal
objective value function it is necessary to compute the conditional expected state given the set of information
in each period. This step is referred to as the state-estimation problem and it is discussed further in the fol-
lowing section. We note that the key to processing distress measurements generated simultaneously by multi-
ple technologies is to compute these expectations efficiently.

2.3. The state estimation problem

The state estimation problem consists of finding the conditional expected state given the set of information
in each period, EX t jIt ½X t�; t ¼ 1; 2; . . . ; T . Under the assumptions discussed earlier, the expectation can be com-
puted with a recursive algorithm known as the Kalman filter. The algorithm is presented below:
Kalman filter Algorithm

Repeat at the start of each period:
Given EX t�1jIt�1

½X t�1�;VX t�1jIt�1
ðX t�1Þ;At�1, and Zt ¼~zt

Define: X̂ t�1  EX t�1jIt�1
X t�1½ �,

P t�1  VX t�1jIt�1
X t�1ð Þ, and

I t ¼ fI t�1;At�1;~ztg
Time Update:

X̂�t ¼ gX̂ t�1 þ hAt�1

P�t ¼ g2P t�1 þ r2
�

Measurement Update:

Kt ¼ P�t b0ðP�t bb0 þ RÞ�1

EX t jI t ½X t�  X̂�t þ Ktð~zt � bX̂�t � aÞ
VX t jIt ðX tÞ  ð1� KtbÞP�t
The Time Update step uses the system equation to project the estimates of the conditional expectation and
variance, i.e., the first two moments of the state distribution (which is Normal under the assumptions pre-
sented earlier). The Measurement Update step revises (with Bayes’ Law) the conditional expectation and var-
iance taking into account the new set of measurements obtained at the start of period t,~zt. The computational
effort of the Kalman filter, and hence the effort of obtaining and implementing an optimal policy using the
proposed framework, increases polynomially with the dimension Zt. This is because the algorithm consists
of basic linear algebra operations whose complexity increases polynomially with the dimensions of the vector
b and the matrix R. The dimensions of b and R increase linearly and quadratically, respectively, with the
dimension of Zt. As a result, the framework does not suffer from the shortcomings of the latent MDP
approach.
3. Numerical study

In this section we present numerical examples to illustrate how the capabilities of (multiple/simultaneous)
inspection technologies are captured in the time series framework, and, in turn, how the framework can serve
to guide the selection of inspection technologies based on economic criteria. Specifically, we use the time series
framework to:

(1) Examine the effect of uncertainty, both in the deterioration process and in the data-collection process, on
the optimal costs of managing transportation infrastructure facilities;
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(2) Analyze the impact of systematic measurement errors on optimal M&R decisions and the ensuing costs
of managing transportation infrastructure facilities; and to

(3) Quantify the value of combining inspection technologies for condition assessment.

We consider instances of the management of a facility over a planning horizon of 100 periods and assume
that the period cost function, deterioration model, and measurement-error model are as follows:
gðX t;AtÞ ¼ X 2
t þ A2

t � 700X t þ 121; 597:75; ð8Þ
X tþ1 ¼ X t � At þ 30þ �t; where �t � Nð0; r2

� Þ; t ¼ 1; 2; . . . ; T : ð9Þ
Zt ¼ X t þ nt; where nt � Nð0; r2

nÞ; t ¼ 1; 2; . . . ; T þ 1: ð10Þ
The parameters presented above were selected to simulate measurements consistent with the data used in the
studies by Humplick (1992) and Ben-Akiva et al. (1993). These studies consider different technologies to mea-
sure alligator cracking on a set of in-service pavements. The salvage value of the facility is set to zero (i.e.,
s(XT+1) = 0); the discount rate to 5% (d = 1/1.05); and the initial condition, X1, to 350.5 (its optimal long-term
steady state). To initialize the Kalman filter in the simulations, we set estimates of the first two moments of the
state distribution EX 0jI0

½X 0� and VX 0jI0
ðX 0Þ to 350.5 and 10,000, respectively.

In Humplick (1992) and Ben-Akiva et al. (1993), the true values of the distress, extracted from the measure-
ments, ranged from 200 to 500 square feet. In the numerical examples that follow, we assume that the latent
condition variable is defined over the interval S � ½200; 500�. The deterioration process is such that, in the
absence of M&R actions, it would take a facility 10 periods on average to deteriorate from the best condition
to the worst. The parameters in the period cost function (8) were chosen to set the long-term steady state at the
midpoint of S, and to set the optimal costs of managing a deterministic system with a perfect technology to
$0. The initial facility condition and the length of the planning horizon were chosen to minimize their impact
on the results.

Prior to presenting the results of the numerical study, we emphasize that our objective is to develop qual-
itative insights about how parametric changes affect the optimal costs of managing infrastructure facilities.
Thus, the parameters used in the study are not representative of any particular facility, although the situation
considered was ‘‘inspired’’ by the management of a pavement section whose condition is inspected on a yearly
basis. In practice, some parameters, e.g., length of the review period, depend on managerial decisions, while
others can be estimated using time series analysis. In particular, the specification and estimation of deteriora-
tion, measurement-error and user cost models that are consistent with the framework is an ongoing research
area.
3.1. Effect of uncertainty on optimal costs

We use the time series framework to study the effect of uncertainty, both in the deterioration process and in
the data-collection process, on the optimal costs of managing infrastructure facilities. Random measurement
errors associated with the precision of a given technology constitute an important source of uncertainty in the
data-collection process. Therefore, this study illustrates how the proposed framework can serve to quantify the
value of using inspection technologies of different precisions.

In this framework, uncertainties in the deterioration and in the data-collection processes are captured by
the parameters r� and rn, respectively. To understand the impact of these parameters on the costs of managing
infrastructure facilities, we consider their effect on the optimal objective function value for the first stage,
v1(I1), which represents the minimum expected costs from the start of the first period until the end of the plan-
ning horizon for a given I1. First, note that v1(I1) varies linearly with the variance of the deterioration process,
r2
� (see Eq. (6)). The effect of uncertainty in the data-collection process, i.e., measurement uncertainty,

captured by rn is more subtle because it does not appear directly in v1(I1). Intuitively, however, we know that
this parameter determines the variance in the conditional state estimate, VX 1jI1

ðX 1Þ, i.e., noisy measurements
increase the uncertainty in the state estimate. By recalling that EX 1jI1

½X 2
1� ¼ VX 1jI1

ðX 1Þ þ E2
X 1jI1
½X 1� we observe

that the optimal objective value function, v1(I1), varies linearly with VX 1jI1
ðX 1Þ. Unfortunately, the effect of rn



500 P.L. Durango-Cohen / Transportation Research Part B 41 (2007) 493–505
on VX 1jI1
ðX 1Þ can only be ascertained experimentally (through successive iterations of the Kalman filter),

because the effect depends on the sequence of measurements, which also depends on r�.
Hence, we conducted a simulation study with r� 2 {0,2.5, 5,7.5,10} and rn 2 {0,25,50,75,100} in order to

study the impact r� and rn further. In the simulation, r� = 0 and r� = 10 denote a deterministic deterioration
process and a highly variable deterioration process, respectively. Similarly, rn = 0 represents a perfect inspec-
tion technology and rn = 100 represents a highly imprecise technology. For the remaining 24 combinations of
the two parameters besides the pair (r�,rn) = (0,0), we simulated 1000 instances of the deterioration and
inspection process described by (8)–(10). The average total discounted costs of applying the optimal M&R
policy are presented in Fig. 1.

From the figure we observe that, as expected, the costs to manage facilities increases as the uncertainty in
the deterioration process grows, and that imprecise data collection technologies result in increased costs. To
understand the effect of rn on VX t jI tðX tÞ and on costs, we consider random instances of the simulations
described earlier with r� = 5. Fig. 2 shows how the Kalman filter updates the second moment of the state dis-
tributions for the four technologies considered, rn = 25, 50, 75, 100. We observe that the variance in the state
distribution drops rapidly in the initial periods. The asymptote and the convergence rate are properties of a
given technology’s precision. Precise technologies reduce the uncertainty in the conditional distribution of
Xt given It, (i.e., VX t jI tðX tÞ is smaller). This leads to more efficient/appropriate M&R decisions and to reduced
costs over the planning horizon. An important observation is that the conditional variance of the state distri-
bution is well within the precision of each technology, i.e., the procedure filters out the random error/noise in
the measurements. For example, the variance in the state distribution when measurements are collected with
the technology r2

� ¼ 10; 000 converges to approximately 1000.
3.2. Effect of systematic measurement errors on life-cycle costs

In this section, we consider the effects of these systematic measurement errors, i.e., additive and multipli-
cative biases, on the optimal costs of managing infrastructure facilities. Note that the Measurement Update

step in the Kalman filter corrects for these biases in the process of estimating the first two moments of the
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conditional state distribution for the given array of measurements. Prior studies in the literature argue that in
the event that biases can be corrected for, technologies with higher precisions (lower values of rn) are prefer-
able (cf. Humplick (1992) and Ben-Akiva et al. (1993)). We show that this is not entirely correct because a
multiplicative bias changes the state of uncertainty about the distribution of the underlying latent variable.
That is, given a measurement-error model that describes the capability of a technology, the variance of the

distribution of Xt is
r2

n

b .
To illustrate the effect of multiplicative bias on the costs of managing infrastructure facilities we consider

instances of the process described by (8)–(10) with r� 2 {0,2.5, 5,7.5,10}. We assume the inspection technology
is described with rn = 50 and b 2 {0.5, 1,1.5, 2} and simulated 1000 instances for each of the 20 possible com-
binations of the parameters. The average total discounted costs are presented in Fig. 3. The results show how
technologies that lead to more precise estimates of the latent condition, Xt, lead to lower life-cycle costs.
3.3. Effect of combining multiple technologies for condition assessment

In this section we show how the time series framework can be used to quantify the value of combining dif-
ferent technologies. In particular, we show that decisions related to adopting and deploying inspection tech-
nologies should not be dictated solely by precision but rather should consider how different technologies and
the measurements they produce relate to each other.

We consider an inspection process that yields two distress measurements that are unbiased indicators of the
single-dimensional underlying condition. That is, the measurement error model is:
Zt ¼ X t þ nt: ð11Þ
The vectors nt are assumed to follow a Gaussian distribution with finite covariance matrix. We assume that
each of the technologies produces highly imprecise measurements with error standard deviation rn = 50.
The relationship between the technologies is captured by the correlation between the measurements and we
consider cases where q = 0, 0.25, 0.5, 0.75, 1 (q = 0 corresponding to independent technologies/measurements
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and q = 1 corresponding to perfectly correlated technologies). The results, presented in Fig. 4, are for the aver-
age costs over 1000 instances for each of the values of q. The figure also includes the average costs when the
facility is monitored with a single technologies with rn = 50 and rn = 25.
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We observe that for the cases of two or three independent technologies (q = 0) the costs incurred are close
to those incurred when the facility is monitored using a single technology with rn = 25 (i.e., a much more pre-
cise technology). The implication is that combining imprecise technologies can lead to substantial savings.
This is particularly important because highly precise technologies tend to be much more expensive to adopt,
particularly when they are first introduced. We also observe that in cases when the measurements are perfectly
correlated (q = 1) the costs are identical to the costs incurred when the facility is managed using a technology
with rn = 50. In this case there is no information gained by collecting a second or further distress
measurements.
4. Conclusions

In this paper, we present an integrated framework to simultaneously address condition and cost forecasting
and M&R decision making for transportation infrastructure facilities. The framework is based on formulating
the underlying resource allocation problem as a discrete-time, stochastic optimal control problem with linear
dynamics and a quadratic criterion. Facility deterioration is represented as a time series, which provides an
attractive and rigorous approach to specify and estimate deterioration (and cost) models for the framework.

An important assumption in the proposed framework is that the state variables are defined over continuous
sets. This makes the framework compatible with statistical models for performance prediction. Moreover, this
representation allows the framework to overcome computational and statistical limitations of existing M&R
optimization models based on the MDP approach.

We present numerical examples to showcase the versatility of the proposed framework. The examples are
motivated by the proliferation of inspection technologies to support the management of transportation facil-
ities. Specifically, we use the framework to analyze the impact of (i) uncertainty in the deterioration and data-
collection/inspection processes, (ii) systematic measurement errors, and (iii) combining inspection technologies
on the optimal costs of managing infrastructure facilities. The main observation that follows from the numer-
ical results is that technology precision and accuracy, as well as the relationships between technologies or mea-
surements all contribute to the capabilities of the inspection process, and thus, to the life-cycle costs of
managing transportation facilities. This differs from earlier studies suggesting that inspection technologies
can be selected solely on the basis of their precision. Our examples show that, even in the event that biases
can be corrected for, accuracy (i.e., multiplicative bias) impacts the capability of the inspection process and
the ensuing costs. We also show that combining imprecise technologies can improve the capabilities of the
inspection process, and can lead to substantial operational savings. This is particularly important because
highly precise technologies tend to be much more expensive to adopt, particularly when they are first
introduced.
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Appendix A. Optimal solution

We proceed by induction, as is done in Dreyfus (1977) or Bertsekas (2000), to show that the optimal policy,
lt(It), and optimal objective value function, v(It), are as given in expressions (3)–(7).

First, note that for stage T + 1, the optimal objective value function is given by the boundary condition as
follows:
vTþ1ðITþ1Þ ¼ EX Tþ1jITþ1
pTþ1X 2

Tþ1 þ qTþ1X Tþ1 þ rTþ1

� �
¼ pTþ1EX Tþ1jITþ1

X 2
Tþ1

� �
þ qTþ1EX Tþ1jITþ1

X Tþ1½ � þ rTþ1
Next, we evaluate the following expectation assuming that vtþ1ðI tþ1Þ ¼ ptþ1EX tþ1jI tþ1
½X 2

tþ1� þ qtþ1EX tþ1jITþ1

½X tþ1� þ rtþ1:
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EI tþ1jI t vtþ1ðI tþ1Þ½ � ¼ EI tþ1jI tEX tþ1jItþ1
ptþ1X 2

tþ1 þ qtþ1X tþ1 þ rtþ1

� �
¼ EX tþ1jIt ptþ1X 2

tþ1 þ qtþ1X tþ1 þ rtþ1

� �
¼ EX t jI tEX tþ1jI t ;X t ptþ1X 2

tþ1 þ qtþ1X tþ1 þ rtþ1

� �
¼ EX t jI tE� ptþ1ðgX t þ hAt þ �Þ2 þ qtþ1ðgX t þ hAt þ �Þ þ rtþ1

h i
¼ EX t jI tE� ptþ1 g2X 2

t þ h2A2
t þ �2 þ 2ghX tAt þ 2gX t�þ 2hAt�

� �
þ qtþ1 gX t þ hAt þ �ð Þ þ rtþ1

� �
¼ ptþ1g2EX t jI t X 2

t

� �
þ ptþ1h2A2

t þ ptþ1ðr2
� þ ��2Þ þ 2ptþ1ghEX t jIt X t½ �At þ 2ptþ1g��EX t jI t X t½ �

þ 2ptþ1h��At þ qtþ1gEX t jI t X t½ � þ qtþ1hAt þ qtþ1��þ rtþ1:
Thus, the optimal objective value function for stage t is as follows:
vtðI tÞ ¼ min
At2R

EX t jI t aX 2
t þ bX tAt þ cA2

t þ dX t þ eAt þ f
� �

þ dEItþ1jIt vtþ1ðI tþ1Þ½ �
� �

¼ min
At2R

aEX t jI t X 2
t

� �
þ bEX t jIt X t½ �At þ cA2

t þ dEX t jI t X t½ � þ eAt þ f
�

þ d ptþ1g2EX t jI t X 2
t

� �
þ ptþ1h2A2

t þ ptþ1ðr2
� þ ��2Þ þ 2ptþ1ghEX t jIt X t½ �At

�
þ 2ptþ1g��EX t jI t X t½ �þ2ptþ1h��At þ qtþ1gEX t jI t X t½ � þ qtþ1hAt þ qtþ1��þ rtþ1

��
ð12Þ
To find the optimal decision for (t, It) we consider:
@vtðI tÞ
@At

¼ bEX t jIt X t½ � þ 2cAt þ eþ d 2ptþ1h2At þ 2ptþ1ghEX t jI t X t½ � þ 2ptþ1h��þ qtþ1h
� �

¼ 0

lðI tÞ ¼ �
bþ 2dptþ1gh

2cþ 2dptþ1h2
EX t jIt X t½ � þ

2dptþ1h��þ dqtþ1hþ e

2cþ 2dptþ1h2

" # ð13Þ
We also note that the second order/sufficiency condition is satisfied when:
@2vtðI tÞ
@A2

t

¼ 2cþ dptþ1h2 P 0
The expressions for parameters pt, qt and rt can be obtained by substituting the result obtained for l(It) in
(13) for At in expression (12). The results are presented in Eq. (4) through (6).
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