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Abstract

The understanding of human mobility and the development of qualitative models
as well as quantitative theories for it is of key importance to the research of human
infectious disease dynamics on large geographical scales.In our globalized world,
mobility and traffic have reached a complexity and volume of unprecedented degree.
Long range human mobility is now responsible for the rapid geographical spread
of emergent infectious diseases. Multiscale human mobility networks exhibit two
prominent features: (1) Networks exhibit a strong heterogeneity, the distribution
of weights, traffic fluxes and populations sizes of communities range over many
orders of magnitude. (2) Although the interaction magnitude in terms of traffic
intensities decreases with distance, the observed power-laws indicate that long range
interactions play a significant role in spatial disease dynamics. We will review how
the topological features of traffic networks can be incorporated in models for disease
dynamics and show, that the way topology is translated into dynamics can have a
profound impact on the overall disease dynamics. We will also introduce a class
of spatially extended models in which the impact and interplay of both spatial
heterogeneity as well as long range spatial interactions can be investigated in a
systematic fashion. Our analysis of multiscale human mobility networks is based on
a proxy network of dispersing US dollar bills, which we incorporated in a model to
produce real-time epidemic forecasts that projected the spatial spread of the recent
outbreak of Influenza A(H1N1).
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1 Introduction & Motivation

The understanding of human mobility and the development of qualitative models
as well as quantitative theories for it is of key importance to the research of human
infectious disease dynamics on large geographical scales. Grenfell et al. state [1]:

“Spatial transmission of directly transmitted infectious diseases is ulti-
mately tied to movement by the hosts. The network of spatial spread
(the disease’s spatial coupling) may therefore be expected to be related
to the transportation network within the host metapopulation.”

In our globalized world, mobility and traffic have reached a complexity and volume
of unprecedented degree. More than 60 million people travel billions of miles on
more than 2 million international flights each week, see e.g. Fig. 2. Hundreds of
millions of people commute on a complex web of highways and railroads most of
which operate at their maximum capacity. Despite this increasing connectivity and
our ability to visit virtually every place on this planet in a matter of days, the
magnitude and intensity of modern human traffic has made human society more
susceptible to threats intimately connected to human travel. Long range human
mobility is now responsible for the rapid geographical spread of emergent infectious
diseases. One of the prime examples of a modern epidemic is the severe acute
respiratory syndrome (SARS) outbreak of 2003. Since then, an increasing amount
of attention and modeling effort has been devoted to understanding to what extent
modern traffic networks impact and determine the dynamics of emergent diseases.
More recently, a novel strain of Influenza A(H1N1), also known as swine flu, first
detected in Mexico and the United States, spread rapidly around the globe [2].

Consequently, intense research effort has been devoted during the recent decade
to the development of quantitative models for the spread of human infectious dis-
eases. In the past even the most sophisticated models had to make plausible assump-
tions on human interactions and their mobility, the key driving forces of an epidemic
across distance. Presently, with increasingly availability of new data sources on hu-
man interactions and mobility, we observe a structural change in the development
of these models. With quantitative assessments of human interactions and mobil-
ity computational epidemiology is now at the brink of developing models that are
(1) predictive, (2) adaptive, and (3) flexible and that can be used as a foundation
for the development of forecast infrastructures for disease dynamics.

A first step into this direction was recently tested in the context of the spread
of swine flu with projections based on a computational model of the H1N1 spread
in the US [3]. Figure 1 depicts the temporal evolution of the cases in a worst
case scenario. The projected time course in these simulations agreed well with the
time course that was observed later, and was a clear indication and motivation to
elaborate, intensify and further develop these modeling approaches.

Needless to say, such a framework needs very detailed information describing
human mobility patterns. In a number of recent studies the statistical properties of
particular human transportation networks were investigated in detail with a focus
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Figure 1: The first attempt of an “into the future” projection of the time course
of an emergent infectious disease. These maps were computed with high perfor-
mance computational techniques and multi-layer, large scale computer simulations
to project the time course of a novel strain of Influenza A(H1N1) epidemic in the
United States. The simulations yield projections and risk assessments of the epi-
demic outbreak in a worst case scenario, in which no containment measures are
taken to mitigate the spread. The figures show the expected number of cases in
each county on May 6, May 13, and May 20, 2009 using the confirmed cases as of
May 6 to construct the initial condition.
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Figure 2: The worldwide air transportation network. More than 3 billion passengers
travel on this network each year, on flights connecting approx. 4000 airports. The
heterogeneity of the network is reflected by the flux of individuals between nodes,
ranging from a few to more than 10,000 passengers per day between nodes.

on air transportation and long distance traffic[4, 5, 6, 7]. However, human mobility
occurs on many length scales, ranging from commuting traffic on short distances
to long range travel by air, and involves diverse methods of transportation (public
transportation, roads, highways, trains, and air transportation). A comprehensive
study incorporating traffic on all spatial scales into a multi-scale dataset would
be a difficult task, furthermore the statistical features of such study are still not
fully understood. How do these properties depend on the length scale? Are they
universal? In what way do they change as a function of length scale? What are the
national and regional differences and similarities? In order to understand human
mobility in the 21st century and the dynamics of associated phenomena, particularly
the geographic spread of modern diseases, it is of fundamental importance to answer
these questions.

With this in mind, we have recently created a model from the multi-scale trans-
portation network and methods to be discussed in this chapter and used it to pro-
duce real-time epidemic forecasts that projected the spatial spread of the recent
outbreak of Influenza A(H1N1) in the United States over a course of up to three
weeks (see Fig. 1). Critical geographical regions or hotspots can be identified on
time (to help mitigate the impact of the disease) and the framework allows to flex-
ibly adapt to the unraveling of new events in new projections by updating initial
conditions or recalibrating model parameters. Furthermore, changes in mobility

58



patterns due to travel restrictions can be addressed.
Epidemic models have been devised in the past on a wide range of complexity

levels. On one end of the spectrum are reaction diffusion models in which local non-
linear infection dynamics is coupled with diffusive dispersal. Spatial heterogeneity
in the host population is generally neglected in these models[8]. Questions they
address are for example: Under what circumstance does a propagating epidemic
wave develop? How does the speed of the wave depend on the parameters of the
model? What impact does spatial heterogeneity have on the disease dynamics, and
what are the statistical regularities in spatial patterns?

On the other end of the spectrum are sophisticated models that are constructed
with a high degree of detail[9, 10, 11, 12]. Examples of these models are agent based
simulation frameworks in which social, spatial and temporal heterogeneity are taken
into account. Frequently these models contain entire global transportation networks
and extrapolations where empirical data is lacking based on known statistics.

This chapter contains three parts. In the first two we will discuss quantitative
assessments of human mobility and recent progress in the study of multi length scale
transportation networks. We will show that despite their complexity these networks
exhibit a set of scaling relations and statistical regularities. In the last part we will
review how the topological features of traffic networks can be incorporated in models
for disease dynamics and show that the way topology is translated into dynamics
can have a profound impact on the overall disease dynamics.

2 Quantitative Assessments of Human Mobility

2.1 Preliminary Considerations

Formally we can address the issue of mobile individuals by the collection of in-
dividual trajectories of each of N individuals of a population, i.e. the collection
{xi(t)}i=1,...,N where each individual is labeled i. Clearly, the measurement and
the prediction of each individual’s location xi(t) as a function of time is beyond
a researcher’s grasp. Some very recent experiments, however, employing high pre-
cision measurements based on GPS (global positioning via satellite) or using cell
phone location as a proxy for xi(t) have made it possible to measure – at least to
some extent – individual trajectories with unexpected accuracy[13]. The next best
approach to human mobility is based on population averages. To this end it is useful
to define the microscopic time dependent density of individuals

u(x, t) =
1
A

N∑

i

δ (x− xi(t)) , (1)

where A is the spatial area under consideration. The global density of individuals
in A is given by the integral of u, i.e.

u0 =
N
A

=
ˆ

dxu(x, t). (2)
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The expectation value 〈u(x, t)〉 of the microscopic density is related to the proba-
bility pi(x, t) of individual i being located at x by

〈u(x, t)〉 =
1
A

N∑

i

〈δ (x− xi(t))〉

=
1
A

N∑

i

pi(x, t). (3)

Because for each i even the quantity pi(x, t) is usually inaccessible to measurement,
a widespread assumption made in models is that individuals are indistinguishable
and that although xi(t) $= xj(t) one assumes pi(x, t) = pj(x, t) and thus

〈u(x, t)〉 =
1
A

p(x, t). (4)

Albeit its simplicity, this equation is fundamental for the probabilistic interpretation
of models that are based on the time-evolution of concentrations. It connects the
probabilistic quantity p(x, t) to the measurable density of individuals. The second
assumption in the conceptual setup of analysing human mobility is an ergodicity
assumption, that is given by

1
∆A

ˆ

dA u(x, t) ≈ 〈u(x, t)〉 , (5)

in which ∆A & A is an area small in comparison to the spatial size of the entire
system but large enough such that sufficiently many individuals reside in it at all
times such that the spatial average (lhs. of Eq. (5)) is approximately equal to the
expected density. The degree to which these assumptions are fulfilled determines
the right choice of models. Two structurally different models reflect a range of
possibilities.

On the one hand, if p(x, t) varies over a limited amount of scales in magnitude
and the global density N/A is large enough, one can find a microscopic scale ∆A
such that a sufficient amount of individuals is always contained in each microscopic
unit area for (5) to be valid. On a large scale one can then consider

n(x, t) = ∆A 〈u(x, t)〉 , (6)

a spatially continuous deterministic quantity, and introduce dynamical equations
for it.

Humans, however, are typically clustered in urban areas, cities, towns and vil-
lages in which the density of individuals is high as opposed to areas in between
where is it negligible. In this case a metapopulation approach is more suitable. In
this approach communities are defined by p(x, t) exceeding some threshold in some
spatially compact area Ωn and one labels these regions by a discrete index n. The
size of each community n is given by

Nn(t) = Ωn 〈u(x, t)〉 . (7)
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In these models mobility of individuals is equivalent to exchange of them between the
discrete set of communities. In metapopulation models Nn(t) is typically considered
a deterministic quantity for which (5) holds. The coupling of these communities is
conveyed by mobility networks that quantify the exchange of individuals between
them. Usually these traffic networks are quantified by a matrix Wnm ≥ 0 whose
elements reflect the traffic flux between communities.

2.2 The Lack of Scale in Human Mobility

By far the most studied human mobility system, particularly in the context of
human infectious disease dynamics, is the worldwide air transportation system, see
Fig. 2. The network is defined by a passenger flux matrix, each element Wnm of
which quantifies the number of passengers that travel between airport m and n.
In a series of studies air transportation networks were investigated with methods
of complex network theory[7, 4, 14] and have been employed as the backbone in
a set of models that attempt to account for the global spread of emergent human
infectious diseases[15, 6, 5].

However, one of the central drawbacks of focusing on air-transportation alone is
that only long range traffic is covered by it. If for instance one sets out to develop a
model for disease dynamics on small to intermediate length scales, e.g. in countries
such as Germany or the UK, air transportation does play a role, but an insignificant
one compared to traffic on the network of highways and railways. Confronted with
the difficulty of compiling a comprehensive dataset of human mobility covering all
length scales, recently the idea was developed to employ proxies of human travel
that indirectly provide information on mobility patterns of individuals. In Ref.[16]
this idea was employed for the first time by analyzing the geographical circulation
of bank notes. In the study, data was analyzed that was collected at the online bill
tracker www.wheresgeorge.com founded by Hank Eskin in 1998. The idea of the
game is simple: Individual dollars bills are marked and enter circulation. When new
users come into possession of a marked bill, they can register at the site and report
the current location of the bill by entering the zip code. Successive reports of a bill
yield a spatio-temporal trajectory with a very high resolution. Since 1998 wheres-
george.com has become the largest bill tracking website worldwide with more than
3 million registered users and more than 140 million registered bills. Approx. 10%
of all bills have been reported at least once after entry into the database, yielding
a total of more than 14 million single trajectories consisting of origin X1 (initial
entry location) and destination X2 (hit location). Figure 3 illustrates a sample of
trajectories of bills with initial entries in five US cities. Shown are journeys of bills
that lasted a week or less. Clearly, the majority of bills remains in the vicinity of
their initial entry, yet a small but significant number of bills traversed distances of
the order of the size of the US, consistent with the intuitive notion that short trips
occur more frequently than long ones. One of the key results of the 2006 study was
the first quantitative estimate of the probability p(r) of a bill traversing a distance r
in a short period of time, a direct estimate of the probability of humans performing
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Figure 3: Short-time trajectories of dollar bills in the United States. Upper Left:
Lines connect origin and destination locations of bills that traveled for less than a
week. The majority of bills remain in the vicinity of their starting point, yet a small
but significant fraction of bills travel long distances. Upper Right: The probability
p(r) of traveling a distance r in a short period of time of T less than a week. The
dashed line indicates the inverse power law of Eq. (8) in the text. The colors encode
the subsets of trajectories that started in large cities (blue), intermediate cities
(green) and small towns (red). Despite systematic deviations for small distances, the
asymptotic power law behavior is the same for all subsets indicating the universality
of dispersal. Lower Left: Two dimensional trajectory of an ordinary random walk
or Brownian motion. Lower Right: Trajectory of a superdiffusive Lévy flight. The
Lévy flight geometry consists of small clusters interconnected by long leaps. The
dispersal of bank notes is reminiscent of Lévy flight trajectories such as the one
depicted.
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journeys of this distance in a short period of time. This quantity is shown in Fig. 3.
This estimate was based on a dataset of 464,670 individual bills. On a range of
distances between 10 and 3,500 km, this probability follows an inverse power law,
i.e.

p(r) ∼ 1
r1+µ

, (8)

with an exponent µ ≈ 0.6. Despite the multitude of means of transportation in-
volved, the underlying complexity of human travel behavior and the strong spatial
heterogeneity of the United States, the probability follows this simple mathemati-
cal law indicating that human mobility is governed by underlying universal rules.
Moreover the specific functional form has important consequences. If one assumes
that individual bills perform a spatial random walk with an arbitrary probability
distribution p(r) for distances at every step one can ask: What is the typical dis-
tance |X(t)| from the initial starting point as a function of time? For ordinary
random walks (Brownian motion) that are ubiquitous in the natural sciences, the

behavior of |X(t)| is determined by the standard deviation σ =
√
〈r2〉 − 〈r〉2 of the

single steps and, irrespective of the particular shape of the distance distribution,
scales according to the ‘square root law’, i.e. |X(t)| ∼

√
t, a direct consequence of

the central limit theorem[17]. However, for a power law of the type observed in the
dispersal of bank notes the variance diverges for exponents µ < 2 and the situa-
tion is more complex. It implies that the dispersal of bank notes lacks a typical
length scale, is fractal and the trajectories of bills are reminiscent of a particular
class of random walks known as Lévy flights[18, 19]. Lévy flights, as opposed to
ordinary random walks, are anomalously diffusive, they exhibit a scaling relation
that depends on the exponent:

|X(t)| ∼ t1/µ. (9)

Because Lévy flights are superdiffusive, they disperse faster than ordinary random
walks, and their geometrical structure differs considerable from ordinary random
walks, see Fig. 3. The discovery that the dispersal of bank notes and therefore
human travel behavior lacks a scale and is related to Lévy flights was a major
breakthrough in understanding human mobility on global scales.

3 Statistical Properties and Scaling Laws in Multi
Scale Mobility Networks

Figure 4 illustrates a proxy network obtained from the flux of dollars in the United
States, including all spatial scales. This network is defined by 3109 nodes (counties
in the United States excluding Alaska and Hawaii) connected by weights Wnm that
represent the flux rate of bills from county m to n in units of bills per day. The
entire network structure is thus encoded in the 3109 × 3109 flux matrix W. As
each location has a well-defined geographical position, this multi-scale US traffic
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Figure 4: Top left : The flux of dollar bills in the United States. Each line represents
the flux of bills between the counties it connects. The color encodes the magnitude of
the flux, bright lines indicate heavy flux, dark lines weak flux. The figure illustrates
the strong heterogeneity of money dispersal, short distance connections typically
exhibit strong fluxes, long distance connections are weaker but significant. Upper
Right: the population density of the United States spatially resolved and colored
on a logscale. Lower left: The US air transportation network. The lines indicate
connections between the 413 major airports in the US. The color encodes the
magnitude of connections in passengers per day. Lower right: Relative frequency
of distances in the multi-scale traffic network obtained from the Where’s George
dataset (red) compared to the air transportation network (blue). Air transportation
mainly serves long distance whereas multi-scale traffic exhibits a broad distribution
ranging from a few to a few thousand kilometers.
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Figure 5: Symmetry of the money circulation network. The figures depicts the
correlation F in

n and F out
n of flux of bill in and out and the in- and out degree kin

n

and kout
n of a node n for all 3109 nodes in the network. The dashed lines represent

the linear relationships.

network can be visualized as a geographically embedded network as shown in the
figure. Qualitatively, one can see that prominent East coast – West coast fluxes exist
in the network. Yet the strongest connections are short to intermediate length scale
connections, as opposed to the air transportation network that serves long distance
only. Although every day 2.35 million passengers travel on the US air transportation
network, this represents only a small subset of the multi-scale traffic network. The
histogram in Fig. 4 illustrates these properties more quantitatively, comparing the
relative frequency of distances in the multi-scale Where’s George network compared
to the air transportation network. Clearly, the majority of distances served by air
transportation peaks around 1000 km, whereas distances in the multi-scale network
are broadly distributed across a wide range from a few to a few thousand kilometers.

In order to understand human mobility on all spatial scales it is therefore essen-
tial to include all means of transportation indirectly involved in the Where’s George
money circulation network. The bill circulation network quantified by the flux ma-
trix can give important insight into the statistical features of human mobility across
the United States. In order to quantify the statistical features of the network we
will concentrate on the flux of bills in and out of a node given by

F in
n =

∑

m

Wnm F out
n =

∑

m

Wmn, (10)

respectively. These flux measures are a direct proxy for the overall traffic capacity
of a node in the network. Furthermore we will investigate the in- and out degree of
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a node defined according to

kin
n =

∑

m

Anm kout
n =

∑

m

Amn, (11)

where the elements Anm are entries of the adjacency matrix A. These elements are
either one or zero depending on whether nodes are connected or not. The degree
of a node quantifies the connectivity of a node, i.e. to how many other nodes a
given node is connected. A first important but expected feature of the multi-scale
mobility network is its degree of symmetry. Figure 5 depicts the correlation of the
flux of bills in and out of each node and a correlogram of the in- and out-degrees.
These quantities exhibit a linear relationship subject to fluctuations,

F in
n ≈ F out

n kin
n ≈ kout

n , (12)

indicated by the dashed lines in the figure. Note also that the magnitude of the flux
values ranges over nearly four orders of magnitude, a first indication of the strong
heterogeneity of the network.

Figure 6: Heterogeneity of multi-scale human mobility networks. Cumulative prob-
ability distributions of the population size of the nodes (top left), the weight matrix
elements Wnm (top right), the flux of bills Fn in and out of nodes (bottom left) and
the degree kn of the nodes (bottom right). The broadness of these distributions is
a consequence of the strong heterogeneity of the network.

66



This high degree of heterogeneity is further illustrated by the cumulative distri-
butions of the weights, the fluxes and the degrees of all the nodes in the network
as depicted in Fig. 6. All quantities are broadly distributed across a wide range
of scales. Very similar broad distributions have been observed in studies of the air
transportation networks[7, 4, 14]. A very important issue in transportation the-
ory is the development of a plausible evolutionary mechanism that can account for
the emergence of these distributions, a task that has not been accomplished so far.
There is no plausible ‘theory’ for human traffic networks as of today that predicts
the precise functional form of the distributions shown in Fig. 6.

Scaling Laws in the Topological Features of Multi-Scale Trans-
portation Network

Figure 7: The functional dependence of influx F in (left) and in-degree kin (right) on
the population size P of a node. The flux of bills depends linearly on the population
size (gray dashed line), whereas the degree exhibits a sublinear dependence (pink
dashed line).

In order to reveal additional structure in multi-scale human mobility networks
we investigated the functional relation of the quantities defined above, i.e.: What
is the functional relation of fluxes and degrees with respect to the population size
of a node? Figure 7 illustrates the statistical relationship between population size
of a node and the flux of bills into a node. The dashed line in the figure represents
a linear relationship with slope one, indicating that traffic through a node grows
linearly with the population size:

F (P ) ∼ P. (13)

Intuitively this is expected: the larger the population of a node the more traffic flows
in and out of it. However, correlating the degree of a node against the population
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size indicates a sublinear relationship,

k(P ) ∼ P ξ, (14)

with an exponent ξ ≈ 0.7, contrasting the intuitive notion that the connectivity of
a node grows linearly with population size as well. From the scaling relations (13)
and (14) we can determine an important property of multi-scale mobility networks.
The typical strength of a connection is given by the ratio of flux and degree and
one obtains heuristically

W ∼ P 1−ξ. (15)

This implies that larger counties are not only connected to a larger number of other
counties but also that the typical strength of every connection is stronger. Both
relations are determined by the universal exponent ξ = 0.7 and these relations hold
over nearly four orders of magnitude, a surprising regularity exhibited by the multi-
scale mobility network. Again, no theory exists that can account for these scaling
relations and the value of the exponent.

4 Spatially Extended Epidemic Models

In summary, two prominent features of multiscale human mobility networks emerged
in the analysis above: (1) Networks exhibit a strong heterogeneity, the distribution
of weights, traffic fluxes and population sizes of communities range over many orders
of magnitude. (2) Although the interaction magnitude in terms of traffic intensities
decreases with distance, the observed power-laws indicate that long range inter-
actions play a significant role in spatial disease dynamics. In the models to be
discussed below, we will introduce a class of spatially extended models in which
the impact and interplay of both spatial heterogeneity as well as long range spatial
interactions can be investigated in a systematic fashion. It will also become clear
that another key issue in spatial disease dynamics is the translation of topological
features of transportation networks, i.e. the flux matrix W into dynamical entities
that generate the dispersal in space. At first glance, this may seem to be a straight-
forward process. However, as we will see, this is a nontrivial task, and the behavior
of a spatially extended epidemic model depends sensitively on the precise choice of
translating the topology of a transportation network into dynamics. To understand
this, we first review some of the paradigmatic models for disease dynamics in a
single population.

4.1 Disease Dynamics in a Single Population

One of the simplest models for an epidemic in a single population is the SIR
model[20]. In this model a population of N individuals is classified according to
infectious state, i.e. a person can be susceptible (S) to the disease, infected (I) by
the disease, and recovered (R) from the disease. Recovered individuals are assumed
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to have acquired immunity to the disease and can no longer be infected. Each
individual in a population may undergo the transition

S → I → R (16)

during the time course of an infection. The dynamics of an epidemic is governed by
only two reactions:

S + I
α−→ 2I, (17)

I
β−→ R, (18)

a contact-initiated disease transmission and the recovery from disease, respectively.
Models of this type are known as compartmental models, because a population is
divided into different compartments defining the state of the system and reactions
between individuals of various compartments define the dynamics. A key premise in
the SIR model – and in fact most single population compartmental models – is the
mixing assumption. It means that (1) all individuals of a given class are identical in
their behavior and (2) independent of one another and that (3) reactions between a
given pair of individuals occurs with the same likelihood as a reaction of any other
pair.

The structure of compartmental models is very similar in nature to chemical
reactions, in fact one usually employs the mass-action principle to derive ordinary
differential equations for the dynamics of the number of susceptibles, infecteds and
recovereds: At any point t in time the probability that an infected individual re-
covers in [t, t + ∆t] is assumed to be constant and proportional to ∆t. The change
in infecteds and recovered is thus

∆I = −∆R ≈ −β∆t. (19)

The probability that an infected successfully transmits the disease to a susceptible
in ∆t is given by

P = ∆t× σ × T × S

N
, (20)

where σ is the contact rate between individuals, T the transmission probability and
S/N the probability that the contact is with a susceptible individual. This yields

−∆S = ∆I ≈ α
S I

N
∆t (21)

where α = σT is the force of infection, i.e. the effective transmission rate. For
the SIR-model this yields the following system of nonlinear ordinary differential
equations (ODEs):

∂tS = −α
S I

N
,

∂tI = α
S I

N
− βI,

∂tR = βI. (22)
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We can define fractions s = S/N , j = I/N and r = R/N and noting that S(t) +
I(t) + R(t) = N (i.e., the population size is conserved) we obtain the SIR model in
its canonical form[21]:

∂ts = −αsj,

∂tj = αsj − βj, (23)
r = 1− s− j.

The key parameter in the SIR model is the basic reproduction number:

R0 =
α

β
=

Trecovery

Tcontacts
,

the ratio of the force of infection and recovery rate. It is the average number of
secondary infections caused by one infected individual during the time that indi-
vidual is infected, on average. When R0 > 1, a population with an initially small
fraction of infecteds will be subject to an epidemic: a fast exponential increase and
a subsequent decay of j(t), see Fig. 8. When R0 < 1 no epidemic occurs. The basic
reproduction number is thus a threshold parameter.

Figure 8: Time evolution of the SIR model as defined by Eqs. (23). Parameters
are β = 1 and R0 = 4.5. Time course of the fraction of infecteds, susceptibles and
recovereds are shown in red, blue and green respectively. The initial condition was
j(0) = 0.01, s(0) = 1− j(0) and r(0) = 0.
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The SIS model

In the SIS model the second reaction scheme (18) is replaced by I → S, infected
individuals do not acquire immunity but rather recover from the disease to become
susceptible again. This model lacks the R class and is governed by only one ODE
for the infecteds,

∂tj = αj(1− j)− βj, (24)

where the conservation of individuals s = 1− j is assumed. For R0 = α/β > 1 the
SIS model evolves to a stable stationary state given by

js = 1− 1
R0

,

in which a fraction js of the population is infected, the disease is endemic. The SIS
model is a useful system for investigating the impact of space on disease dynamics
and we will discuss the spatially extended SIS model in the next section.

4.2 Spatial Models

In the heart of all spatial models is the motivation to forsake the assumption of ho-
mogeneous mixing of individuals and incorporate the fact that individuals belonging
to different populations exhibit different interaction probabilities and that they are
mobile in space. The conceptual tool underlying the development of spatial models
is that of a metapopulation. A metapopulation is a set m = 1, ...,M of populations
of size Nn. The total number of individuals of the metapopulation is

N =
M∑

n=1

Nn. (25)

It is usually assumed that the dynamics in each population is governed by dynamics
that adhere to homogeneous mixing but interaction of individuals between popula-
tions are governed by additional laws. The most important of such interactions for
disease dynamics is the random exchange of individuals between populations. The
most straightforward generalization of the SIS model including metapopulations is
given by:

Sn + In
α−→ 2In

In
β−→ Sn

Sn
wmn−−−→ Sm

In
wmn−−−→ Im (26)

In addition to the first two reactions, i.e. ordinary SIS dynamics in each population
n, susceptibles and infecteds can randomly move between population m and n, the
rate of which is governed by the probability rate wmn. The assumption in this
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model is that individuals of all types randomly travel between populations in the
same fashion. The set of ODEs governing disease dynamics is then given by an set
of 2M coupled ODEs:

∂tSn = −α
SnIn

Nn
+ βIn +

∑

m"=n

[wnmSm − wmnSn] ,

∂tIn = α
SnIn

Nn
− βIn +

∑

m"=n

[wnmIm − wmnIn] . (27)

The total rate of leaving a node n is given by
∑

m"=n wmn and the expected time
an individual remains in a population n is

〈Tn〉 =
1∑

m"=n wmn
. (28)

Note that in the metapopulation system the number Nn(t) = Sn(t) + In(t) of
individuals in each subpopulation is generally time-dependent, in fact adding the
ODEs pairwise we obtain

∂tNn =
∑

m"=n

[wnmNm − wmnNn] . (29)

In most models it is usually assumed that the system is equilibrated with respect
to dispersal, i.e. Nn does not change over time and is therefore equal to the fixed
point of Eq. (29), i.e.

Nn(t) = Ns
n = Cn = const. (30)

In the following we will refer to the stationary population size of node n as the
capacity Cn. In equilibrium the flux of individuals from n to m balances that of m
to n (detailed balance condition):

wnmCm = wmnCn. (31)

In this case the spatial SIS model (27) reduces to a set of M coupled ODEs for the
fraction of infecteds in each population:

∂tjn = αjn(1− jn)− βjn +
∑

m"=n

[wnmjm − wmnjn] , (32)

with jn = In/Cn. The system defined by (32) is an example of an infectious
disease dynamical system extended to the metapopulation level. A large class of
contemporary models for spatial disease dynamics are related in structure to it[5, 22,
15, 9]. One of the key difficulties in theoretical epidemiology are (1) the identification
of effective communities of populations that make up a metapopulation and (2) the
quantitative assessment of travelling rates wnm between these populations. Note
that the introduction of populations n making up the metapopulation did not specify
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spatial locations. In the dynamical system (32), the relation between communities
is solely defined by the dynamical coupling ωnm. In most models, however, all
communities are typically embedded in space such that each population n has a well
defined geographical location xn. One can then use the geographical information to
make and test assumptions on how the exchange rates wnm depend on geography.
One of the most popular assumptions in this context is that the flux of individuals
between two communities depends on their size and their distance. The total flux
of individuals in equilibrium from community m to n and vice versa is given by the
left and the right hand side of the detailed balance condition (31), respectively. In
the majority of models it is assumed that the flux Fnm increases with the capacities
(i.e. the stationary size of the populations) Cm and Cn and decreases monotonically
with the geographic distance between them, i.e.

Fnm = ω0 (CmCn)ξ G (|xn − xm|) = Fmn, (33)

with 0 ≤ ξ ≤ 1. The function G takes care of the dependence on distance. De-
pending on the type of metapopulation and dynamical context, this kernel can
be exponential, Gaussian or show an algebraic decay with x. Using the relation
Fnm = wnmCm between absolute flux and probability rates in equilibrium, Eq. (33)
implies for the hopping rate

wnm = w0C
ξ
n ×G (|xn − xm|)× Cξ−1

m . (34)

Inserted into the rate equation (29) one can check that Cn is the equilibrium com-
munity size. In epidemiological contexts, spatial communities often reflect cities,
towns and villages. The specific choice of G(x) put forth by Eq. (8) is the power-law
decay

G(x) ∼ x−1−µ. (35)

Inserted into Eqs. (33) and (34) gives

ωnm = ω0
Cξ

n × Cξ−1
m

|xn − xm|D+µ , (36)

where D = 2 is the spatial dimension. The parameter ξ quantifies the impact of
origin and destination in the travelling event m → n:

• When ξ = 1 we have

wnm ∝ Cn and Fnm ∝ CnCm. (37)

This implies that the rate is independent of properties of the origin and the
flux is proportional to the size of both communities.

• When ξ = 0 we have

wnm ∝ 1
Cm

and Fnm ∝ 1, (38)
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i.e. the rate of traveling to destination n is independent of properties of the
destination and the flux is independent of community sizes of both places.

• An interesting system is the symmetric case when ξ = 1/2. This implies that

wnm ∝
√

Cn/Cm and Fnm ∝
√

CnCm. (39)

In this situation, the rate wnm is independent of scaling the entire metapopu-
lation size uniformly by some factor and the flux is the geometric mean of the
community sizes of origin and destination. That implies for example: When
we scale the entire population size by Cn → 2Cn this scales the flux by a
factor of two as well.

4.3 Continuity Limit and Fractional Transport

With the definition of the rate according to (36) the dispersal of individuals is given
by

∂tNn = w0

∑

m"=m

[
Cξ

nCξ−1
m

|xn − xm|2+µ Nm −
Cξ

mCξ−1
n

|xm − xn|2+µ Nn

]

with µ > 0. Useful insight into the properties of this master equation can be gained
by performing a continuity limit. Letting xn be points on a grid of microscopic
areas ∆A and Nn(t) = n(xn, t)∆A, Cn = c(xn)∆A the above equation becomes

∂tn(x, t) = w0 lim
∆A→0

ˆ

y/∈∆A
dy

cξ(x)cξ−1(y)n(y, t)− cξ(y)cξ−1(x)n(x, t)
|x− y|2+µ . (40)

The integral is over all points outside of an area centered at x. One has to be careful
carrying out this limit, because of the divergent denominator. In fact, originally
the rate m → n was only defined for interacting communities n $= m and it is
meaningless for n = m. One can, however, carry out the limit ∆A → 0 and
interpret the integral as a Cauchy integral. The limit of the rhs. of (40) then
depends sensitively on the value of the exponent µ. For µ > 2 one obtains[23, 24]

∂tn = D0

[
cξ∆cξ−1n− cξ−1n∆nξ

]
, (41)

with n = n(x, t) and c = c(x) and ∆ is the second spatial derivative. This implies
that when the exponent µ exceeds the critical value µc = 2 the process becomes
a diffusion process in the limit above. However, this diffusion process evolves in a
heterogeneous environment determined by the function c(x).

If µ < 2, as for example observed in the dispersal of bank notes (in that case
µ ≈ 0.6), the limit yields

∂tn = D0

[
cξ∆µ/2cξ−1n− cξ−1n∆µ/2nξ

]
(42)
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where the operator ∆µ/2 is known as the fractional Laplacian, a non-local singular
operator defined by

(∆µ/2f)(x) = Cµ

ˆ

dy
f(y)− f(x)
|x− y|D+µ (43)

where Cµ is a constant and D the spatial dimension[25, 26]. The reason why ∆µ/2 is
referred to as a fractional derivative is that in Fourier space it exhibits a particularly
simple form, a multiplication by −|k|µ. Equations of the type (42) are known as
fractional diffusion equations and have been employed in a number of physical,
biological and chemical systems[27, 28, 29, 30], ranging from anomalous diffusion
of protein motion on folded polymers to human eye-movements[31, 25, 26]. The
derivation above relates dispersal of individuals in metapopulations to fractional
diffusion equations for the first time, an approach that may well prove to be valuable
in the future.

4.4 Limiting Cases

Before reinserting the dispersal component into the original spatial SIS model, it
is worthwhile considering known marginal cases of the general fractional diffusion
equation (42). For example when µ = 2 and c(x) = 1 the dynamics equation reduces
to

∂tn = D0∆n, (44)

i.e. ordinary diffusion in a homogeneous environment. When µ = 2 but c(x) is a
variable function of position, i.e. Eq. (42) is the same as Eq. (41), the dispersal is
governed by a Fokker-Planck equation

∂tn = −∇F n +
1
2
∆D n, (45)

which is equivalent to (41), and force and diffusion coefficients F = F (x) and
D = D(x), respectively, are related to the heterogeneity function c(x). This relation
depends, of course, on the value of the parameter ξ. For example, when the system
is origin-driven, i.e. when ξ = 0, Eq. (41) reduces to

∂tn = D0∆n/c, (46)

a Fokker-Planck equation with a space dependent diffusion coefficient

D(x) =
D0

c(x)
(47)

that is inversely proportional to the stationary population density c(x). This means
that in this system diffusion is high in regions where the population is small and vice
versa. In the destination driven system ξ = 1, we obtain a Fokker-Planck equation
with

D(x) = 2D0c(x) and F (x) = 2D0∇c(x). (48)
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Here, diffusion increases with population density, but more importantly a nonzero
drift towards regions with higher population density is introduced. When µ = 1/2,
i.e. the impact of origin and destination are the same, the diffusion coefficient is
constant and the force term is given by

F (x) = D0∇ log c(x). (49)

One can see that only in this situation the dynamics does not change when the
population density c(x) is scaled uniformly by some factor. In this case − log c(x)
can be considered a potential V (x) of the system, with minima in densely populated
areas and maxima in weakly populated ones.

The most interesting case and certainly the one closest to reality is the general
case, when the dynamical system is fractional diffusive and spatially heterogeneous.
The combination of the rhs. of (42) with the spatial SIS model of Eq. (32) gives the
spatially extended fractional SIS model,

∂tj = αj(1− j)− βj + D0c
ξ−1

[
∆µ/2cξj − j∆µ/2cξ

]
. (50)

The spatial SIR model or related systems that differ in the local dynamics can be
derived analogously, for instance the spatial SIR model is given by

∂ts = −αjs + D0c
ξ−1

[
∆µ/2cξs− s∆µ/2cξ

]
, (51)

∂tj = αjs− βj + D0c
ξ−1

[
∆µ/2cξj − j∆µ/2cξ

]
.

The key question is: What are the general properties of solutions to these reaction
fractional diffusion equations? How do their solutions depend on the parameters
0 ≤ ξ ≤ 1 and 0 < µ ≤ 2 ? And what are approximate choices for these parameters
for real epidemics?

To address the first question, solutions of three variants of the spatial SIR model
are depicted in Fig. 9. One system is spatially homogeneous and dispersal is ordi-
nary diffusion. The solution exhibits traveling wavefronts that propagate at constant
speeds, a fact known for similar systems such as the Fisher equation. In fact, a spa-
tially homogeneous SIR variant was employed to estimate the speed of propagation
of the black death in Europe in the 14th century. The second simulation is a system
with some degree of spatial heterogeneity, i.e. c(x) is variable but µ = 2. As in the
spatial homogeneous system, solutions to the spatial SIR model still exhibit well-
defined traveling wavefronts that exhibit some irregularity imposed by the spatial
heterogeneity. However, the key feature of a wavefront propagating with a constant
speed remains unchanged.

If however, one introduces non-local dispersal by choosing a value µ < 2, the
overall statistical features of the spreading pattern changes drastically. Instead of
a well shaped wavefront the pattern exhibits localized islands in the time course of
the epidemic. This behavior is a direct consequence of the interplay of the spatial
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Figure 9: Snapshots of a two-dimensional spatially extended SIR model. Top: A
spatially homogeneous system with c(x) = const and ordinary diffusion in space.
This system exhibits a propagating front at constant speed. Center : The same as
above but with spatial heterogeneity. The heterogeneity induces randomness in the
shape of the wavefront but produces no qualitatively different patterns. Bottom:
The fractional SIR model with heterogeneity. The combination of scale-free diffusion
and heterogeneity introduces a novel type of spatiotemporal pattern with fractal
properties.
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Figure 10: Simulation of the fractional spatially extended SIS model (bottom) in the
United States compared to a system with ordinary diffusion (top). Each column
represents a snapshot of the time evolution of both systems. Initial outbreak in
the simulations was Washington, DC and parameters of the dispersal were ξ =
1 (destination driven) and µ = 0.6 (superdiffusion, bottom) or µ = 2 (ordinary
diffusion, top). The patterns exhibit the qualitative behavior of the idealized system
shown in Fig. 9.
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heterogeneity and the non-local superdiffusive nature of dispersal incorporated in
the fractional SIR model (51).

The last questions can be answered by a comparison to the empirical results
presented above. The fact that the flux of dollar bills into nodes is proportional
to the population size suggests that human dispersal is destination driven, see for
example Eq. (37) and that ξ = 1. The power-law in the short time dispersal
probability for the distance, i.e. p(r) in Eq. (8) implies that µ ≈ 0.6. With these
parameters, and the equilibrium distribution of individuals in a large geographic
area, we can investigate the spreading pattern in a real geographic context. Results
are shown in Fig. 10 for a fractional SIS model with parameters µ = µh ≈ 0.6 in
the United States for an initial outbreak in Washington, DC. For c(x) we chose
the population density of the counties in the United States. In comparison to a
system with only local dispersal, the fractional SIS systems shows a pattern similar
in structure to the idealized system of a square grid (i.e. Fig. 9). For instance,
well before the bulk of the epidemic reaches the Midwest, the disease has already
almost reached is maximum in urban areas on the West-Coast. Despite its structural
simplicity and the crude assumptions made on the course of deriving the fractional
SIS model, these spreading patterns are strikingly similar to recently published
large scale agent based simulation studies on the most likely spread of new human
influenza H5N1 subtype in the United States.

Although these results are promising, from a theoretical point of view little is
known about the general properties of fractional and heterogeneous reaction diffu-
sion equations such as (50) and (51). This is primarily due to the fact that these
equations are difficult to solve numerically and the analytical tools for investiga-
tion are currently underdeveloped. The richness of possible applications of this
approach, not only in spatial epidemiology, however, leads us to believe that in
the near future novel and interesting properties of fractional diffusion systems in
heterogeneous environments will be discovered and will find their identification in
natural systems.
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