NUFRIEND Insights

ENERGY TECHNOLOGIES - HYBRID DIESEL-BATTERY

Northwestern University Freight Rail Infrastructure & Energy Network Decarbonization (NUFRIEND) is a comprehensive industry-oriented tool to simulate the deployment of new energy technologies across U.S. freight rail networks. Scenario-specific simulation and optimization modules provide estimates for carbon reductions, capital investments, costs of carbon reductions, and operational impacts for any given deployment profile.

WHAT IS BEING DEPLOYED?

- The NUFRIEND framework allows users to select from two hybrid train configurations:
 - 2:1 diesel to battery configuration (i.e., 4 diesel locomotives and 2 battery locomotives per train) or
 - 1:1 diesel to battery configuration (i.e., 3 diesel locomotives and 3 battery locomotives per train).
- The optimization framework determines the optimal charging facility locations and sizes for serving freight demand.
- The simulation framework accounts for region-specific hybrid energy intensity estimates for battery/diesel locomotives.

This NUFRIEND Insights highlights the difference between cost and emissions results for the two hybrid configurations, compared to pure diesel operations.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Hybrid 2:1 (Diesel to Battery)</th>
<th>Hybrid 1:1 (Diesel to Battery)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions Reduction</td>
<td>19%</td>
<td>30%</td>
</tr>
<tr>
<td>Levelized Cost of Operation</td>
<td>0.66 €/ton-mile</td>
<td>0.68 €/ton-mile</td>
</tr>
<tr>
<td>Cost of Avoided Emissions</td>
<td>320 $/ton CO₂</td>
<td>230 $/ton CO₂</td>
</tr>
</tbody>
</table>

Comparison of simulation results for two hybrid train configurations, assuming a minimum inter-facility distance of 1600 miles. Bubble sizes are proportional to the power (in MW) assigned to each charging facility location.

HOW CAN HYBRID LOCOMOTIVES DECARBONIZE RAIL?

- Hybrid diesel-battery locomotives are an effective transition technology for decarbonizing current operations.
- They enable the rollout of critical infrastructure to support more advanced freight rail decarbonization initiatives.
 - Require the location of initial charging stations on the rail network.
 - Provide immediate emissions reductions through route-level energy optimization.

SUMMARY

- Hybrid diesel-battery locomotives are practical technologies with immediate impacts on emissions reductions.
- These train configurations leverage current (lower) range battery locomotives to optimize train energy consumption.
- The rollout of required charging infrastructure serves as a stepping stone for future full-battery locomotive operations.
- High capital costs can be reduced by innovations in charging technologies and charging station design and utilization.

1 The cost of avoided emissions measures the average cost required to reduce emissions by one ton of CO2 and serves as a strong evaluation and policy metric.

NUFRIEND Insights for:

RAILROADS
- Immediate gains from strategic deployment of battery locomotives.
- Transition along easy-to-decarbonize routes.

OEMS
- Opportunity to test battery locomotives.
- Innovations in charging stations.
- Need for cost-competitive manufacturing relative to other fuel technologies.

ENERGY PROVIDERS
- Coordination to ensure adequate electricity supply.

Visit transportation.northwestern.edu for more NUFRIEND Insights.

This work is funded under the LOwering CO2: Models to Optimize Train Infrastructure, Vehicles, and Energy Storage (LOCOMOTIVES) project by the Advanced Research Projects Agency - Energy (ARPA-E) of the U.S. Department of Energy under Award Number DE-AR0001469. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.