
NUFIEND Package User Guide i March, 2024

Northwestern University Freight Rail
Infrastructure and Energy Decarbonization

(NUFRIEND) Package

User Guide

March, 2024

Version 2.0

NUFIEND Package User Guide ii March, 2024

Table of Contents

1. Introduction .. 3

1.1. Purpose .. 3

1.2. Information .. 3

1.3. Data Flows ... 3

2. Getting Started.. 3

2.1. Code Package Structure .. 3

3. Running Scenarios with the Code Package 4

3.1. Specifying a Scenario .. 4

3.2. Running a Scenario .. 4

3.3. Accessing Scenario Ouputs and Results.. 5

 Printing Scenario Results ... 5

 Plotting Scenario Results.. 6

3.4. Testing Code Package ... 6

3.5. Altering Scenario Data ... 7

NUFIEND Package User Guide 3 March, 2024

1. Introduction
The NUFRIEND Framework and Dashboard is a comprehensive industry-oriented tool to optimize and

simulate the deployment of new energy technologies across U.S. freight rail networks. Scenario-specific

simulation and optimization modules provide estimates for carbon reductions, capital investments, costs of

carbon reductions, and operational impacts for any given deployment profile. Recent updates to the

underlying framework and code package allow for the consideration of a greater range of scenarios and

modeling objectives, including modeling hybrid diesel-battery locomotive deployment and time-dependent

technology rollout optimization strategies.

1.1. Purpose
The purpose of this user guide is to introduce users to the code package underlying the NUFRIEND

Framework and how it may be used to run a range of scenarios of interest to users. A demonstration video

has been published for additional reference.i

1.2. Information
Users can refer to the NUFRIEND Framework - NUTC webpage for more updated information on the

overall project. Any questions regarding the dashboard can be directed to Max Ng and Adrian Hernandez.ii,

iii

1.3. Data Flows
In contrast to the internal data flow adopted for the NUFRIEND Dashboard, all data used in the NUFRIEND

Framework code package must be on the user’s local machine. This means that in addition to users

specifying all the required scenario parameters, they must either (a) accept the provided data files, or (b)

substitute the data files with data of their own.1 Importantly, most of the provided data files contain state of

the art parameter estimates on energy, economic, and operational values.2 In order to illustrate the code

package’s functionality while keeping with our confidentiality agreements, we have substituted the freight

flow data used in our analysis with a ramdomly generated dataset. This randomly generated dataset allows

users to run the simulation tool and understand the required file format for any self-provided freight flow

data.

Data outputs are stored in the objects that are returned by the program, which can be used to graphically

display the results or print/write the results to files for further user analysis.

2. Getting Started
The NUFRIEND Framework code package has been made publicly available in a GitHub repository.iv

Users can access the code and necessary data by cloning the repository or by directly downloading all of

the files onto their local machine.

2.1. Code Package Structure
The code package contains several kinds of files and subdirectories. The entire program is written in python,

with each of the “.py” files containing module code. The two primary files are “run.py,” which contains the

method for running a provided static deployment scenario and “run_mp.py,” which contains the method

1 If users wish to provide their own data files, their formats and names must match the formats and names of the files

they are replacing.
2 The sources and methods for computing these values are discussed in greater detail in the Final Technical Report

available on the NUTC Webpage.

https://www.transportation.northwestern.edu/research/featured-reports/locomotives.html
https://github.com/NUTransport/NUFRIEND
https://www.transportation.northwestern.edu/research/featured-reports/locomotives.html

NUFIEND Package User Guide 4 March, 2024

for running a provided dynamic/rollout deployment scenario. Both of these methods apply all the other

code modules and functions on a specified scenario input file that must be created and appropriately filled

out by the user. Users will also see two directories “input” and “output”. The “input” directory contains

several subdirectories which each contain relevant input data files. Though users can replace/edit any files

in these subdirectories, we note file structure and names should remain the same as those provided in the

package.3

The “scenario” subdirectory contains the most relevant files for specifying a simulation scenario. The file

“input_legend.csv” contains information on allowed input values for scenario specification. The

accompanying “input_template.csv” file is a blank file users can copy to fill out and specify any desired

scenario in. Several test scenarios have been provided for users to experiment with, these files begin with

“test” and are each followed by a number. To ensure scenarios are running as they should be, we have

included pregenerated verification files for each test scenario provided (i.e., “test1_check.csv” can be used

to load the scenario to check the locally run scenario produced from “test1.csv”). Greater detail on this

process is provided in Section 3.4. Finally, the suffix “_mp” on all the code and input files stands for “multi-

period” and is used to separate the static optimization framework files from the rollout optimization

framework files.

The “output” directory contains several subdirectories for storing the scenario results when caching is

desired. This allows future scenarios to be loaded instead of re-run. The files found in these subdirectories

are meant to allow users to check whether the program is functioning as expected on their machine and are

not essential to running the actual program.

3. Running Scenarios with the Code Package
This package was developed using Python 3.10 and requires all the packages (and any dependencies)

listed in the “util.py” file. Because the foundation of the NUFRIEND Framework rests on network

optimization, a Gurobi for Python with a valid Gurobi License is required to run most scenarios.v,vi

3.1. Specifying a Scenario
Users will need to create and directly enter their scenario specification parameters into a “.csv” file within

the “input>scenario” subdirectory. This file must follow the exact structure provided in the

“input_template.csv” file (or “input_template_mp.csv” file for rollout optimization) and satisfy the input

value restrictions detailed in “input_legend.csv” (or “input_legend_mp.csv” file for rollout optimization).

If users wish to provide their own freight flow data, this provided file must match the format of the

“flow_template.csv” file (or “flow_template_mp.csv” file for rollout optimization) in the “input>flow”

subdirectory. The name of the desired flow data file must be included as the value for the

“flow_data_filename” row within scenario specification file.

3.2. Running a Scenario
A scenario can be run in a few simple ways, depending on whether the scenario is to be run on the static

optimization framework or on the rollout optimization framework. The relevant code blocks are displayed

below, each using one of the provided test scenario filenames as inputs.

Users may wish to cache the scenario results produced by the static optimization framework. If a scenario

was previously run and cached, it can be loaded as shown in Code Block 2.

3 Should a file be accidentally altered or replaced, we recommend users redownload the package (or specific data

files) from the GitHub repository.

NUFIEND Package User Guide 5 March, 2024

Code Block 1 - Code for running static optimization framework on scenario specified in 'test1.csv'.
No prior scenario is loaded and the scenario output is cached.

Code Block 2 - Code for loading cached test results for static optimization framework on scenario
specified in 'test1.csv'.

Code Block 3 - Code for running rollout optimization framework on scenario specified in
'test1_mp.csv'.

3.3. Accessing Scenario Ouputs and Results
The two scenario running functions presented in Section 3.2 return two objects: (1) a NetworkX DiGraph

object, G and (2) a list of Plotly Figure objects, f.4

 Printing Scenario Results
Scenario results are stored across multiple Python dict objects within G (some of which contain other dict

objects within them). More specifically, these are stored in three different locations within G, which can

be accessed as shown in Code Block 4Code Block 6. Examples some specific data users can access is

shown in Code Block 7. Using standard Python methods, users can write the results from specific

dictionaries to any desired output files (e.g., json, csv, or txt files) for further analysis.

Code Block 4 - Method for accessing graph-level scenario results.

Code Block 5 - Method for accessing node-level scenario results (for the 11th node in the list of
nodes). Line 3 shows how a user would access the keys of the Python dict object that is returned.

4 NetworkX Graph objects are useful for storing large networks with attribute information at the node, edge, and

graph levels. The Python package documentation is available at https://networkx.org/documentation/stable/.

from run import *

G, f = run_scenario_file(scenario_code='test1', plot=True,

load_scenario=False, cache_scenario=True)

from run import *

G, f = run_scenario_file(scenario_code='test1_check', plot=True,

load_scenario=True, cache_scenario=False)

from run_mp import *

G, f = run_mp_scenario_file(scenario_code='test1_mp', plot=True)

G.graph

G.graph.keys() # provides the dict keys for reference

node_list = list(G.nodes())

G.nodes[node_list[10]]

G.nodes[node_list[10]].keys() # provides the dict keys for reference

https://networkx.org/documentation/stable/

NUFIEND Package User Guide 6 March, 2024

Code Block 6 - Method for accessing edge-level scenario results (for the 5th edge in the list of
edges). Line 3 shows how a user would access the keys of the Python dict object that is returned.

Code Block 7 - Examples of valid dictionary keys for accessing results stored in G.

 Plotting Scenario Results
Scenario visualizations are stored in the various plots contained in f (the returned list of generated Plotly

Figure objects). Each of the plots are interactive and contain additional scenario information that can be

seen by hovering one’s mouse over different plot components. The plots can be displayed by indexing a

specific element of the list f, as shown in Code Block 8. The static framework list of plots contains 6

plots, while the dynamic rollout framework list of plots contain 2 plots. The 6 plots generated for the

static framework scenario are (in order as stored in f): network map, scenario summary table, emissions

plot, levelized cost of operation plot, deployment percentage pie chart, and cost of avoided emissions

table. For the dynamic rollout framework results, the 2 plots produced are: dynamic network animation

and composite rollout network plot.

Code Block 8 - Example of how to display a particular plot from list of returned Plotly Figures.

3.4. Testing Code Package
Prior to specifying their own scenarios, users are encouraged to utilize the provided test scenario files in

the “input>scenario” subdirectory to test the framework’s installation on their local machine and to

familiarize themselves with the framework’s inputs and outputs. Samples to verify the framework is

running properly have been provided for the static optimization framework. Users can follow the example

in Code Block 9 to verify the functionality of the program on their local machine.

edge_list = list(G.edges())

G.edges[edge_list[4]]

G.edges[edge_list[4]].keys() # provides the dict keys for reference

print(G.graph['operations']['deployment_perc']['TOTAL'])

print(G.nodes[node_list[10]]['facility'])

print(G.edges[edge_list[4]]['battery_avg_kwh']['TOTAL'])

f[0] # plots the network map for static framework results

NUFIEND Package User Guide 7 March, 2024

Code Block 9 - Example of how to use the provided cached scenario results to test for proper
program functionality.

3.5. Altering Scenario Data
Users can also edit, alter, or completely substitute the provided data files that are used by the underlying

optimization and scenario evaluation models. As discussed in Section 2.1, the data files containing the

required input parameter values are stored in the subdirectories contained in the “input” directory. Any

edits made to these files must conform to the exact file structure as the original (any files that are

substiritued must match the exact file format, have the same data types, and contain the same name as the

original file it is replacing). A summary of the “input” subdirectories and the important files they contain

users can edit is provided below:

• “commodity”: subdirectory for commodity-specific data

• “commodity_energy_ratios.csv”: file containing commodity-specific energy intensity ratios

• “facility”: subdirectory for facility-specific data

• “facility_info_test1_mp.csv”: file containing facility-specific data for use in the dynamic rollout

facility location and flow selection optimization model. This is only relevant for dynamic rollout

scenarios. The filename must be included in the “facility_info_filename.csv” field of the scenario

input filename for a specific scenario.

• “flow”: subdirectory for freight flow data. Conatains files with freight flow data broken down by

railroad, commodity, time window, and forecasted year (if applicable).

• “general”: subdirectory containing general parameter data.

• “constants.csv”: contains information on several scientific constants—should not be changed.

• “fuel_tech_efficiency_factor.csv”: contains information on fuel technology efficiency factors,

relative to diesel locomotives.

• “hybrid_energy_intensities.csv”: contains information from hybrid simulation results on resulting

diesel and battery energy intensities for a particular assumed train configuration.

• “SPLC_station_master.csv”: contains a legend to map geographic coordinates to their neares

SPLC railyard identifier. Can be used to process and tie carload waybill data to GIS rail networks.

• “LCA”: subdirectory contains life-cycle analysis parameter estimates for different energy

technologies. All files are for different energy technologies and different time periods. File

edits/replacements must preserve the data structure completeness of the previous file.

from run import *

run the scenario locally

G, f = run_scenario_file(scenario_code='test1', plot=True,

load_scenario=False, cache_scenario=False)

load the provided cached file corresponding to this scenario

G_check, f_check = run_scenario_file(scenario_code='test1_check',

plot=True, load_scenario=True, cache_scenario=False)

check if the deployment percent of the locally generated instance

matches the deployment percent of the results loaded from the

corresponding cached file provided with the repository

print(G.graph['operations']['deployment_perc']['TOTAL'])

print(G_check.graph['operations']['deployment_perc']['TOTAL'])

can also plot each of the figure objects to check if networks match

f[0]

f_check[0]

NUFIEND Package User Guide 8 March, 2024

• “matrices”: subdirectory contains matrices generated by the optimization program used to facilitate

future optimization runs. This directory, and the files within it are not critical inputs.

• “networks”: subdirectory contains the rail network data files. These files are stored as “.pkl” files to

preserve the data structures.

• Users that wish to provide their own network data should do so by loading a GIS shapefile of

their choice into a NetworkX Graph object with all the necessary data to match the structure of

the provided sample netwokrs. The file name should follow the convention of “<railroad name>”

followed by “_geo_graph_simplified.pkl”.

• “TEA”: subdirectory contains techno-economic analysis parameter estimates for different energy

technologies. All files are for different energy technologies and different time periods. File

edits/replacements must preserve the data structure completeness of the previous file.

NUFIEND Package User Guide 9 March, 2024

Template Revision History

Date Version Description Author

December
2022

1.0 Initial Version Northwestern
University
Transporation Center
and Argonne National
Laboratory

March 2024 2.0 Updated Version including hybrid
diesel-battery locomotive technologies
and a rollout optimization framework

Northwestern
University
Transporation Center
and Argonne National
Laboratory

This dashboard has been developed by Northwestern University Transportation Center (NUTC: Hani S.

Mahmassani, Pablo Durango-Cohen, Adrian Hernandez, Max Ng) and Argonne National Laboratory

(ANL: Amgad Elgowainy, Michael Wang, Joann Zhou, Nazib Siddique) as part of the LOwering CO2:

Models to Optimize Train Infrastructure, Vehicles, and Energy Storage (LOCOMOTIVES) project funded

by the Advanced Research Projects Agency - Energy (ARPA-E) under the United States Department of

Energy (USDOE).

i URL: https://drive.google.com/file/d/1GxRHQ3dJDNbQLOKKMjsPROvc0wGu8Ph9/view?usp=share_link
ii URL: https://www.transportation.northwestern.edu/research/featured-reports/locomotives.html
iii max.ng@u.northwestern.edu (Max Ng), AdrianHernandez2025@u.northwestern.edu (Adrian Hernandez)
iv URL: https://github.com/NUTransport/NUFRIEND
v Insturctions for setting up Gurobi for Python can found at https://support.gurobi.com/hc/en-

us/articles/360044290292-How-do-I-install-Gurobi-for-Python.
vi A Gurobi License can be obtained at https://www.gurobi.com/downloads/

https://drive.google.com/file/d/1GxRHQ3dJDNbQLOKKMjsPROvc0wGu8Ph9/view?usp=share_link
https://www.transportation.northwestern.edu/research/featured-reports/locomotives.html
mailto:max.ng@u.northwestern.edu
mailto:adrianhernandez2025@u.northwestern.edu
https://github.com/NUTransport/NUFRIEND
https://support.gurobi.com/hc/en-us/articles/360044290292-How-do-I-install-Gurobi-for-Python
https://support.gurobi.com/hc/en-us/articles/360044290292-How-do-I-install-Gurobi-for-Python
https://www.gurobi.com/downloads/

	1. Introduction
	1.1. Purpose
	1.2. Information
	1.3. Data Flows

	2. Getting Started
	2.1. Code Package Structure

	3. Running Scenarios with the Code Package
	3.1. Specifying a Scenario
	3.2. Running a Scenario
	3.3. Accessing Scenario Ouputs and Results
	3.3.1. Printing Scenario Results
	3.3.2. Plotting Scenario Results

	3.4. Testing Code Package
	3.5. Altering Scenario Data

