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The Context:
Mobility as Process
in Connected Systems



THE USER IS AT THE

CENTER OF THIS WEB
| ¥ OF CONNECTIVITY AND

the internet Ny | “ALWAYS AWARE”

of everything N L= o SYSTEMS AND DEVICES

Source: Qualcomm

WHY IS THIS RELEVANT TO TRANSPORTATION?



WAHY IS THIS RELEVANT TO TRANSPORTATION?

SEAMLESS CONNECTIVITY

TRANSPORTATION DELIVERS PHYSICAL
MOBILITY IN A VIRTUALLY CONNECTED MOBILE
ENVIRONMENT



Everybody is talking about it

The real value of The Internet of Everything lies in the value
of connections among people, process, data, and il

k. iy 3

not simply in the sheer number of things that are connected

Wheen wour car becomes connacted 1o
the Intermat of Everything...
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KEY TECHNOLOGY
ENABLERS

NETWORKS
Peer to peer

Wide area
wireless

Backbone

SERVERS AND
DATA STORAGE

*  Tracking your phone,
. Family & Friends



NOT LIMITED TO CARS AND OBJECTS

technn!ngy




System Intelligence through
Predictive Analytics



Mobile units + Inexpensive
wireless internet: wireless sensors
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REAL-TIME INFORMATION
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ACID TEST

How is more data allowing me to

Do things differently (better- faster,
cheaper, safer, higher impact, customer-
pleasing...)

Do different things (grow activities,
revenue, Improve image, employee
retention.. )



STRATEGIC MODELS

DATA
DECISION @ acorirvs |
MAKING WAREHOUSE/
POLICY & PHYSICAL | ANALTICS KNOWLEDGE
DESIGN
MANAGERS/ USERS
OPERATORS g >Y>TEM
INTELLIGENCE
) 4
II;CI_)ANI\?STEDI?EI;/:GNS DIAGNOSTICS
and POLICIES
PREDICTIVE
\ 4 IVIANAGEIVIEN
MEDIUM TERM OPERATIONAL STATUS LAYER
INTERVENTIONS DECISIONS/
v PHYSICAL CONDITION LAYER BEHAVIOR
REAL-TIME/
SHORT TERM INFRASTRUCTURES

INTERVENTIONS

‘ INTERMODAL TRANSPORTATION NETWORKS <
CONTROLS

> COMMUNICATION/SENSING NETWORKS

>



Traffic Estimation and Prediction System (TrEPS)
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Prediction and Real-time Traveler
Information



Consistent Anticipatory Travel
Time Information
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(Reference: Dong and
Mahmassani, 2010)




Consistent Anticipatory Travel

Time Information

WHAT WE KNOW
Information on currently prevailing conditions
may not be effective: overreaction, time lags,
stochastic and dynamic variation

Anticipatory information effective, but poses

three challenges:
- capturing user responses to provided information:
CONSISTENCY
- users care about reliability of information
- computation for large networks



Closed-loop Rolling Horizon Framework

RH approach is a practical method for generating and implementing
solutions to dynamic programming problems.

Closed-loop structure allows the control policies obtained in traffic

prediction model to be implemented in real world and transferred to
state estimation model.

stage length

[
>

I | | Prediction — stage 1 I heavy congestion

| | | | [ ] medium congestion

| Prediction — stage 2

[ ] freeflow

| Real world/Estimation

—>

roll period



The Test Bed Network : Irvine

Network

* Freeways 1-405, I-5, state
highway 133

e 326 nodes

* 626 links
 61TAZs

e 57 road detectors

Demand

« Two hours morning peak

e 15min warm-up period + 45
min clearance time

Parameters

* Roll period: 5 minutes

* Prediction horizon varying
from 30 to 60 minutes



Sensitivity to Prediction Horizon

look-ahead algorithm recursive averaging algorithm
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= Anticipatory information works better than prevailing information
= Longer prediction horizon provides better performance
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Sensitivity to Market Penetration Rate

-
D
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Market Penetration Rate

e Provision of anticipatory travel time information improve the overall

network performance

80%

90% 100%

——Prevailing
—=— Anticipatory
(look-ahead)

—— Anticipatory
(iterative)

—3S0

e Solve the overreaction problem caused by providing prevailing

(instantaneous) information
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Average Travel Time Freeway Speed

50 80
45 | ——Travel time information
o 70 -
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Scenarios:

— only anticipatory travel time information is provided
— both anticipatory travel time and reliability information provided

* Significant time savings are observed when travel reliability information is
provided in addition to travel time information

* Providing travel reliability information contributes to delaying the onset of
breakdown and alleviating its extent, with higher and more stable flow indicating
an increase in freeway’s utilization



V.

Predictive Control:
Pricing



Pricing Strategy for

Managed Lane Operation

« What differentiates anticipatory from reactive pricing?
— Network state prediction
— Use predicted traffic conditions

— Calculate link toll within the prediction horizon
Implement it in real time

N
Link Toll Toll values Real World
Generator ) Traffic

-
@ _ Traffic | D
Predicted data \ Prediction Traffic data




The Test Bed Network: CHART

Toll Lane Start B 195 corridor between
1-95-MD-166 Junction
Washington, DC and
Baltimore, MD, US

B 2 toll lanes

B 2241 nodes

B 3459 links
Toll Lane End
1-95-1-495 Junction

B 111 TAZ zones

® 2 hours morning peak

demand




Pricing Strategies Compared

No pricing (base case)

Static pricing

— Predetermine the time-varying link tolls based on the
historical information

Reactive pricing

— Set time-varying link tolls based on prevailing traffic
conditions

Anticipatory pricing

— Set time-dependent link tolls based on predicted traffic
conditions

OBJECTIVE: AVOID BREAKDOWN- optimize throughput,
reliability, under economically efficient allocation



lllustrative Results — Travel Time

Travel Time {min)
— [ L] b [42] (1)
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Warm-up period: increase in travel time at the beginning

With the anticipatory pricing strategy, the travel times become

steady after 1 hour (free flow condition)

Static pricing strategy provides free flow condition on the toll lanes,

but reduces the LOS on the alternative freeway lanes
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lllustrative Results — Traffic Measures
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« Concentrations averaged over links along the congested portion of

toll road, weighted by the link length

 Throughputs measured at downstream of where traffic breaks down

In base case (no pricing)

» Anticipatory pricing strategy can provide higher throughput while

maintaining lower concentration (steady traffic flow)
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V

Weather-Related Traffic
Management (WRTM)



Weather-sensitive Traffic Estimation and
Prediction System (TrEPS)

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

. Weather-sensitive traffic operations model | Weather data

Estimation: weather-sensitive traffic

, : : Weather monitoring systems ]7
simulation-assignment model

A 4

Prediction: weather-sensitive traffic
simulation-assignment model

Weather forecast Jf

Weather-responsive traffic Alert weather

management strategies L conditions




Weather-sensitive DTA model

Model impacts of adverse weather e o
on transportation networks =’
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Study Networks

Chicago

= 40443 links

144 links are tolled

1400 freeways

201 highways

2120 ramps

(96 of them are metered)
36722 arterials

= 13093 nodes

2155 signalized intersections

= 1961 zones

1944 internal
17 external

* Demand period

5am -10am hourly demand
355 unique link counts
Observation Interval: 5 min

TEA]

Il
|

]

_é/(/ 1
» )i

q r

1]

Tl
=

34



Study Networks m%l_,

Eee Salt Lake City

RSs

S = 2 250 zones
% = 17,947 links
it e 16,293 arterials
i . 576 ramps
Eal T, * 136 highways

e 791 freeways
] = 8,309 nodes

* 1,134 signalized
intersections

= Demand horizon
* 6bam —9am

= Simulation horizon
* 6bam —10am
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Study Networks

Long Island
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SLC Case Study |

Off-line Implementation :
Effectiveness of VSL/VMS Strategies

= Test Scenarios
* Clear Day: Maximum visibility with zero precipitation.

* Snow: Visibility ranges from 10 to 1.75 miles, snow
intensity ranges from 0.01 to 0.15 inches per hour
network-wide.

* Snow with VMS - Variable Speed Limit: Speed
reduction strategies are implemented on freeway
corridors.

 Snow with VMS — Mandatory Detour: Vehicles are
detoured from some heavily impacted links to
alternative routes.

37
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WRTM Strategies

VMS - VSL

VMS - Detour
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Case Study Il

Off-line Implementation (Salt Lake City)

Accumulated Percentage of Completed Vehicle(%)

= Demand Management
* Analysis Results
100
90 200
80
@ 150
2
70 s
Heavy Snow (50% Demand) % 100
60 Heavy Snow (55% Demand) 2
Heavy Snow (60% Demand) g
50 Heavy Snow (65% Demand) § 50
Heavy Snow (70% Demand) o
40 Heavy Snow (75% Demand) t
Heavy Snhow (80% Demand) 'Eo 0
30 Heavy Snow (85% Demand) £
Heavy Snow (90% Demand) S
20 Heavy Snow (95% Demand) X -50
Heavy Snow (100% Demand)
== == Base (No Snow + 100% Demand)
10 -100
0
6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM
Time

(a) Time-dependent network throughput

measure

B %Change-AvgTTime
B %Change-AvgSTime

100% 95% 90% 85% 80%

% Demand

(b) %Change in performance measures
for different demand levels relative to

base-case
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Case Study

On-line Implementation (Salt Lake City)

= Target weather event :
* Snow on April 6, 2012

= Before the event

* Retrieved a set of VSL strategies
from the WRTM strategy
repository.

* Performed the off-line simulation
analysis to select the best strategy
given the predicted weather
scenario.

* Selected VSL strategy

» Deploy VSL on Veterans
Memorial Highway
(Southbound)

Selected VSL strategy under
the given snow scenario



Case Study

On-line Implementation (Salt Lake City)

At 7:16AM, predicted traffic states for 7:26AM
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Case Study

On-line Implementation (Salt Lake City)

At 7:54AM, predicted traffic states for 8:04AM
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ONGOING PROJECT WITH FHWA and UDOT in Salt Lake City

Deploy and evaluate calibrated

f
TrEPS for an arterial
corridor(RIVERDALE) to support < EE
. . . [
WRTM interventions, especially Qi%
o o -
signal control strategies
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VI.

Logistics Operations in Congested
Urban Environments



Challenges for City Logistics Carriers

= Deliveries in urban areas suffer from time-
varying congestion, and various traffic events,
such as lane-closure, accidents, construction,
weather etc.

= Real time customer requests.

= Customers expect on-time deliveries within
service time windows.

55



Research Objective

" To develop an integrated system which has the
following features:

e Capable of mapping real-life operational
components into analytical VRP models.

* Respond to real-time customer requests.

* Consider traffic variations on road networks
(including effect of weather, incidents, special
events, etc...)

* Applicable to problems of practical sizes.

56



Overall Architecture

Real-Time Traffic
Data and Events
-Travel Times
-Traffic Incidents

!

Dynamic Traffic
Assignment
Model and
Simulator

!

Real-Time
Requests

|

A Priori
Requests

l

g

State Prediction
Module

Online Booking
Processor

A Priori Routing
Planner

Service Network:
Nodes: Unserved customers and NEWLY accepted customers, locations of fleets

Links: time-dependent shortest paths linking nodes

Online Re-
routing Planner
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Online Booking Processor & Re-
routing Planner

Current Urban H|stor|_cal .
) or Daily Traffic
Routing Road
TD OD Events
Plan Network .
Matrix
l l | | l |
DYNASMART- DYNASMART-
| I Estimation Prediction <=
I Online
» Booking I
| Processor I
I Acceptance/ I
| Rejection I
| Decisions
| Service |
| Network |
I_ o _Online Re-routing_ - _I
Updated Routing Plans Planner Updated Routing Plans
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An lllustration of VRP with TDTT

time

Time Window

’ / / /
J / / /
/ / /
4 / /

/ /
i /
Window/

/ / /
/ / / / /)
/ / / ,
/ / /
/ / /
/ / /
/
Y , Time
/ / / .
/
, / / / //
, / / / /
/ / i /
/ / /
/ /
/
/
/

’@ Legend:

€© Arrival Time

© Depart Time

= Selected TD Path
————— » TD Path

Service Time

Waiting Time
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Heuristic Algorithm: Local Search
Operators

o

TOLOMLL

a) 2-opt*

worQuitiog®

aain STF

b) Exchange

wrQutting?

werQuitiog?

o0 o0 o0

c) Segment Exchange

d) Insertion
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Case Study: Chicago Network

= Nodes: 1,578
= Links: 4,805
= TAZ: 218

= TD OD: 16hr
(5am-9pm),
~1.6mil vehicles
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No. of Veh.

Numerical Results: Feasibility

50 | |
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40 .
30/ .

-20

| | |
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MCSCormick

Northwestern Engineering

Northwestern University Transportation Center

PREDICTION essential in real-time traffic
management and urban logistics

Considerable opportunities: new sources of personal
iInformation, emerging technologies

Computational challenges remain

User behavior: willremain moving target, because
users will adapt hence need for adaptive schemes

Growing role of private sector as business models
become more compelling
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THE SWEET SPOT FOR SYSTEM MANAGEMENT

Leverage system state information and individual
characteristics (and preferences) in generating
Interventions that are

» dynamic (timely)
» localized (consider network and non-network factors)

» anticipatory (consider predicted events and system
evolution)

» adaptive (learn about individual responses and system
Impacts)

» distributive (across modes, times of day, user groups)

» economically efficient (e.g. consider value of time distribution)
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