

Delivering value in

RAILWAY

With Operations Research

October 30, 2012

NETWORK MAP & FACT SHEET

BNSF Facts

Length of network: 32,000 route miles States in network: 28 Canadian provinces in network: 2 Employees: 38,000 Headquarters: Fort Worth, Texas Ports served: 40+ Intermodal facilities: 31 Locomotives: 6.000 Average annual capital investment (2000-2010): \$2.6 billion Signal locations: 12,400 Bridges: 13,100 Tunnels: 87 Tunnel miles: 34 Highway-railroad grade crossings: 25,800 Packages shipped on time during typical holiday season: 50 million Carloads shipped in 2010: 9.2 million Distance BNSF hauls 1 ton of freight on 1 gallon of diesel fuel: 495 miles

BNSF Franchise

BNSF Network

- Balanced revenue base (recession resistant)
 - Bulk less sensitive to economy
 - Inputs to manufacturing sensitive to economy
 - Consumer driven sensitive to economy

BNSF 2011 Revenues: \$19,548 Millions

Major Customers & Beneficial Owners 10,000+ Customers and 21,000+ Bene-Owners

WHO ARE WE

- A group that provides analytical consulting and decision support tools throughout BNSF Railway
- Part of Capacity Planning and Operations Research
- ~17 full-time/interns with advanced degrees in Operations Research or Industrial Engineering
- OR started after the BNSF merger in mid 90's
 - Strategic Studies
 - Technology Services
 - Service Design
 - Capacity Planning and Operations Research

MISSION, VISION & VALUE

SAMPLE OR APPLICATIONS in OPERATIONS

Equipment Distribution

- Railroads own many of the railcars used by their customers.
- Railcars come in a variety of types and sizes with a number of distinguishing characteristics.
- Customers have varying requirements for railcars.

 The Problem: Once a railcar is unloaded, where should it be sent for its next load?

Equipment Distribution (the old way)

<u>ED</u>

Equipment Distribution Optimization

<u>EDO</u>

System-Wide, Optimal Solution Solutions Automatically Revisited

Supply

Empties (at next available location) Loads (future empties at unloading location) Empty cars expected to be received in interchange

All Supply Defined by Equipment Types (ETs)

Demand

Customer Demands Non-Customer Demands

Solving

- Identify all possible assignments of supply to demand -equipment match <u>and</u> able to arrive "in time"
- Calculate a "value" for each possible assignment
- Find the group of assignments that result in the greatest overall "value"
- Re-solve every fifteen minutes -- taking into consideration updates to supply and demand since the last solve and rethink opportunities along the way.

EDO Rethinks

12

STOCHASTIC EMPTY CAR DISTRIBUTION

Problem Description

- Given
 - Demand: customer demands to load cars, timing, location and car characteristics
 - Supply: Empty car supply, timing, location and car characteristics
 - Transit time: Probable transit times from supply to demand points
- Task: Assign empty cars to customer requests

Benefits/Current Status

• More efficient and reliable assignments of cars to customer demands

STOCHASTIC EMPTY CAR DISTRIBUTION

Example

- Assume a demand with acceptance window between Friday and Saturday.
- A car becomes available on Monday, and matches the customer's equipment requirements.
- PEST indicates that if car is assigned, it will be at the customer's facility on Friday.

- PESTs are a point estimates of transit time.
- PESTs do not capture the stochastic component of the problem.
- Probability distributions give a more general picture, and allow to explicitly include expected early or late costs in the process of assigning value to candidates for the solver.
- Probability distributions are estimated using observed (historical) transit times.

Status

- EDO has been in production since 2000.
- EDO currently handles empty distribution for the following carload equipment fleets – box cars, covered hoppers, gondolas, flat cars, open top hoppers, ag singles, and woodchips.
- Probable transit times were added to EDO in 2007/2008.
- CSXT EDO application is a finalist for this year's Edelman Award

Where is Analytics used?

- Identifying Opportunity- Data Analytics
- Decision Support tools Advanced Analytics
- Support Roll-out
 - Track usage
 - Run-times
 - Follow up on Failures
 - Quantify impact
- Identify opportunities

